Flexible development environment for educational robotics

Christoph Krofitsch, W. Lepuschitz, M. Klein, G. Koppensteiner
{"title":"Flexible development environment for educational robotics","authors":"Christoph Krofitsch, W. Lepuschitz, M. Klein, G. Koppensteiner","doi":"10.1109/ICCAR.2015.7165852","DOIUrl":null,"url":null,"abstract":"Robotics is considered to be a powerful tool for teaching STEM especially when employing white-box platforms to build and program robots. In this context, programming environments should be simple and understandable for increasing the learning success and for easing the entry for teachers with non-informatics background. Furthermore, many robotics applications can also benefit from flexibility in the program deployment in contrast to the usual code-compile-download paradigm. To address these issues, this paper presents a flexible programming environment based on a layered robot control architecture, which involves the usage of mobile devices. Source code created on a smartphone or tablet can be downloaded to the robot controller, which organizes the programs having on-board compilation and execution environments. Besides, a versioning system adds to the comfort. The presented approach enables students to intuitively handle their robots, but can also be applied in more sophisticated scenarios where module-based flexible programming is required.","PeriodicalId":422587,"journal":{"name":"2015 International Conference on Control, Automation and Robotics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Control, Automation and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2015.7165852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Robotics is considered to be a powerful tool for teaching STEM especially when employing white-box platforms to build and program robots. In this context, programming environments should be simple and understandable for increasing the learning success and for easing the entry for teachers with non-informatics background. Furthermore, many robotics applications can also benefit from flexibility in the program deployment in contrast to the usual code-compile-download paradigm. To address these issues, this paper presents a flexible programming environment based on a layered robot control architecture, which involves the usage of mobile devices. Source code created on a smartphone or tablet can be downloaded to the robot controller, which organizes the programs having on-board compilation and execution environments. Besides, a versioning system adds to the comfort. The presented approach enables students to intuitively handle their robots, but can also be applied in more sophisticated scenarios where module-based flexible programming is required.
灵活的教育机器人开发环境
机器人被认为是一种强大的STEM教学工具,尤其是在使用白盒平台构建和编程机器人时。在这种情况下,编程环境应该简单易懂,以提高学习成功率,并为非信息学背景的教师提供便利。此外,与通常的代码编译-下载模式相比,许多机器人应用程序还可以从程序部署的灵活性中受益。为了解决这些问题,本文提出了一种基于分层机器人控制体系结构的灵活编程环境,其中涉及到移动设备的使用。在智能手机或平板电脑上创建的源代码可以下载到机器人控制器中,机器人控制器组织具有板载编译和执行环境的程序。此外,版本控制系统增加了舒适性。所提出的方法使学生能够直观地操作他们的机器人,但也可以应用于更复杂的场景,其中需要基于模块的灵活编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信