Deterministic Distributed Dominating Set Approximation in the CONGEST Model

Janosch Deurer, F. Kuhn, Yannic Maus
{"title":"Deterministic Distributed Dominating Set Approximation in the CONGEST Model","authors":"Janosch Deurer, F. Kuhn, Yannic Maus","doi":"10.1145/3293611.3331626","DOIUrl":null,"url":null,"abstract":"We develop deterministic approximation algorithms for the minimum dominating set problem in the CONGEST model with an almost optimal approximation guarantee. For ε 1/ poly log Δ we obtain two algorithms with approximation factor (1 + ε)(1 + ł n (Δ + 1)) and with runtimes 2O(√ log n log log n) and O(Δ poly log Δ + poly log Δ log* n), respectively. Further we show how dominating set approximations can be deterministically transformed into a connected dominating set in the CONGEST model while only increasing the approximation guarantee by a constant factor. This results in a deterministic O(log Δ)-approximation algorithm for the minimum connected dominating set with time complexity 2O(√ log n log log n).","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We develop deterministic approximation algorithms for the minimum dominating set problem in the CONGEST model with an almost optimal approximation guarantee. For ε 1/ poly log Δ we obtain two algorithms with approximation factor (1 + ε)(1 + ł n (Δ + 1)) and with runtimes 2O(√ log n log log n) and O(Δ poly log Δ + poly log Δ log* n), respectively. Further we show how dominating set approximations can be deterministically transformed into a connected dominating set in the CONGEST model while only increasing the approximation guarantee by a constant factor. This results in a deterministic O(log Δ)-approximation algorithm for the minimum connected dominating set with time complexity 2O(√ log n log log n).
CONGEST模型中的确定性分布支配集近似
针对CONGEST模型中的最小支配集问题,提出了一种确定性逼近算法,并给出了近似最优的逼近保证。对于ε 1/ poly log Δ,我们得到了两种近似因子(1 + ε)(1 + zn (Δ + 1))和运行时间分别为2O(√log n log log n)和O(Δ poly log Δ + poly log Δ log* n)的算法。进一步,我们展示了如何在CONGEST模型中确定性地将支配集近似转换为连通支配集,同时只增加一个常数因子的近似保证。这导致了最小连接支配集的确定性O(log Δ)近似算法,其时间复杂度为2O(√log n log log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信