{"title":"The Portrait Problem: Bayesian Inference with Joint Likelihood","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0007","DOIUrl":null,"url":null,"abstract":"Chapter 7 discusses the “Portrait Problem,” which concerns the dispute about whether a portrait frequently associated with Thomas Bayes (and used, in fact, as the cover of this book!) is actually a picture of him. In doing so, the chapter highlights the fact that multiple pieces of information can be used in a Bayesian analysis. A key concept in this chapter is that multiple sources of data can be combined in a Bayesian inference framework. The main take-home point is that Bayesian analysis can be very, very flexible. A Bayesian analysis is possible as long as the likelihood of observing the data under each hypothesis can be computed. The chapter also discusses the concepts of joint likelihood and independence.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chapter 7 discusses the “Portrait Problem,” which concerns the dispute about whether a portrait frequently associated with Thomas Bayes (and used, in fact, as the cover of this book!) is actually a picture of him. In doing so, the chapter highlights the fact that multiple pieces of information can be used in a Bayesian analysis. A key concept in this chapter is that multiple sources of data can be combined in a Bayesian inference framework. The main take-home point is that Bayesian analysis can be very, very flexible. A Bayesian analysis is possible as long as the likelihood of observing the data under each hypothesis can be computed. The chapter also discusses the concepts of joint likelihood and independence.