Complexity and Optimization Analysis of Spatial Network

Jin Li, Junhai Ma
{"title":"Complexity and Optimization Analysis of Spatial Network","authors":"Jin Li, Junhai Ma","doi":"10.1109/FITME.2008.51","DOIUrl":null,"url":null,"abstract":"Optimization is a classical problem in graph theory, and lots of researchers are working on the complexity of complex networks. We visualize and analyze some countriespsila national highway networks with Pajek and Ucinet, and find that they share several universal topological properties: tending to choose short edges, average degree is smaller than 4, small clustering coefficient and large diameter, and the degree distribution can be expressed in a general formula. All of above characteristics attribute to 2-dimension of the spatial network. Then we modify the optimization model from the economic viewpoint and use genetic algorithm to optimize the networks, which is proved useful and effective.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Optimization is a classical problem in graph theory, and lots of researchers are working on the complexity of complex networks. We visualize and analyze some countriespsila national highway networks with Pajek and Ucinet, and find that they share several universal topological properties: tending to choose short edges, average degree is smaller than 4, small clustering coefficient and large diameter, and the degree distribution can be expressed in a general formula. All of above characteristics attribute to 2-dimension of the spatial network. Then we modify the optimization model from the economic viewpoint and use genetic algorithm to optimize the networks, which is proved useful and effective.
空间网络的复杂性与优化分析
优化是图论中的一个经典问题,许多研究者都在研究复杂网络的复杂性。利用Pajek和Ucinet对一些国家的国家公路网进行了可视化分析,发现它们具有几个普遍的拓扑性质:倾向于选择短边、平均度小于4、聚类系数小、直径大,并且度的分布可以用一般公式表示。所有这些特征都归因于空间网络的二维性。然后从经济学的角度对优化模型进行修正,利用遗传算法对网络进行优化,证明了遗传算法的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信