{"title":"Analysis of complex extreme learning machine-based nonlinear equalizer for coherent optical OFDM systems","authors":"A. Güner, Ö. Alçin","doi":"10.1109/IDAP.2017.8090178","DOIUrl":null,"url":null,"abstract":"One major drawback of coherent optical OFDM (CO-OFDM) is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Fiber nonlinearities can be mitigated using machine learning algorithms that are a nonlinear decision classifier. In this study, C-ELM based nonlinear equalizer is proposed for a MQAM CO-OFDM. MQAM CO-OFDM systems are simulated by designing a Monte Carlo simulation. In this simulation, the effect of fiber nonlinearities on received signals is demonstrated with constellation diagrams and results are given in form of BER-Fiber Length variations.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One major drawback of coherent optical OFDM (CO-OFDM) is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Fiber nonlinearities can be mitigated using machine learning algorithms that are a nonlinear decision classifier. In this study, C-ELM based nonlinear equalizer is proposed for a MQAM CO-OFDM. MQAM CO-OFDM systems are simulated by designing a Monte Carlo simulation. In this simulation, the effect of fiber nonlinearities on received signals is demonstrated with constellation diagrams and results are given in form of BER-Fiber Length variations.