Yan Wang, Jian Liu, Yingying Chen, M. Gruteser, J. Yang, Hongbo Liu
{"title":"E-eyes: device-free location-oriented activity identification using fine-grained WiFi signatures","authors":"Yan Wang, Jian Liu, Yingying Chen, M. Gruteser, J. Yang, Hongbo Liu","doi":"10.1145/2639108.2639143","DOIUrl":null,"url":null,"abstract":"Activity monitoring in home environments has become increasingly important and has the potential to support a broad array of applications including elder care, well-being management, and latchkey child safety. Traditional approaches involve wearable sensors and specialized hardware installations. This paper presents device-free location-oriented activity identification at home through the use of existing WiFi access points and WiFi devices (e.g., desktops, thermostats, refrigerators, smartTVs, laptops). Our low-cost system takes advantage of the ever more complex web of WiFi links between such devices and the increasingly fine-grained channel state information that can be extracted from such links. It examines channel features and can uniquely identify both in-place activities and walking movements across a home by comparing them against signal profiles. Signal profiles construction can be semi-supervised and the profiles can be adaptively updated to accommodate the movement of the mobile devices and day-to-day signal calibration. Our experimental evaluation in two apartments of different size demonstrates that our approach can achieve over 96% average true positive rate and less than 1% average false positive rate to distinguish a set of in-place and walking activities with only a single WiFi access point. Our prototype also shows that our system can work with wider signal band (802.11ac) with even higher accuracy.","PeriodicalId":331897,"journal":{"name":"Proceedings of the 20th annual international conference on Mobile computing and networking","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"779","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2639108.2639143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 779
Abstract
Activity monitoring in home environments has become increasingly important and has the potential to support a broad array of applications including elder care, well-being management, and latchkey child safety. Traditional approaches involve wearable sensors and specialized hardware installations. This paper presents device-free location-oriented activity identification at home through the use of existing WiFi access points and WiFi devices (e.g., desktops, thermostats, refrigerators, smartTVs, laptops). Our low-cost system takes advantage of the ever more complex web of WiFi links between such devices and the increasingly fine-grained channel state information that can be extracted from such links. It examines channel features and can uniquely identify both in-place activities and walking movements across a home by comparing them against signal profiles. Signal profiles construction can be semi-supervised and the profiles can be adaptively updated to accommodate the movement of the mobile devices and day-to-day signal calibration. Our experimental evaluation in two apartments of different size demonstrates that our approach can achieve over 96% average true positive rate and less than 1% average false positive rate to distinguish a set of in-place and walking activities with only a single WiFi access point. Our prototype also shows that our system can work with wider signal band (802.11ac) with even higher accuracy.