Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient

M. Sirazhudinov, L. Dzhabrailova
{"title":"Operator estimates for the averaging of the Riemann-Hilbert problem for the Beltrami equation with a locally periodic coefficient","authors":"M. Sirazhudinov, L. Dzhabrailova","doi":"10.31029/demr.16.4","DOIUrl":null,"url":null,"abstract":"Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\\varepsilon^{-1} x)$, $b(x,\\varepsilon^{-1} x)$, $c(\\varepsilon^{-1} x,\\delta^{-1} x)$, $d(\\varepsilon^{-1} x,\\delta^{-1} x,\\gamma^{-1} x)$, etc., where $\\varepsilon$, $\\delta$, $\\gamma,\\ldots>0$ --- small parameters, while functions $a$, $b$, $c$, $d$, $\\ldots$ have an ordered structure (for example, they are periodic in variables $y=\\varepsilon^{-1} x$, $z=\\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\\mu(x,\\varepsilon^{-1} x)$.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"179 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.16.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Local characteristics of mathematical models of strongly inhomogeneous media are usually described by functions of the form $a(\varepsilon^{-1} x)$, $b(x,\varepsilon^{-1} x)$, $c(\varepsilon^{-1} x,\delta^{-1} x)$, $d(\varepsilon^{-1} x,\delta^{-1} x,\gamma^{-1} x)$, etc., where $\varepsilon$, $\delta$, $\gamma,\ldots>0$ --- small parameters, while functions $a$, $b$, $c$, $d$, $\ldots$ have an ordered structure (for example, they are periodic in variables $y=\varepsilon^{-1} x$, $z=\delta^{-1} x$, etc.). Consequently, the corresponding mathematical models are differential equations with rapidly oscillating coefficients. This work is devoted to estimates of the averaging error. We study the generalized Beltrami equation with a locally periodic coefficient $\mu(x,\varepsilon^{-1} x)$.
具有局部周期系数的Beltrami方程的Riemann-Hilbert问题的平均算子估计
强非均匀介质数学模型的局部特征通常用$a(\varepsilon^{-1} x)$、$b(x,\varepsilon^{-1} x)$、$c(\varepsilon^{-1} x,\delta^{-1} x)$、$d(\varepsilon^{-1} x,\delta^{-1} x,\gamma^{-1} x)$等形式的函数来描述,其中$\varepsilon$、$\delta$、$\gamma,\ldots>0$是小参数,而函数$a$、$b$、$c$、$d$、$\ldots$具有有序结构(例如,它们在变量$y=\varepsilon^{-1} x$、$z=\delta^{-1} x$等)。因此,相应的数学模型是具有快速振荡系数的微分方程。这项工作致力于平均误差的估计。研究了具有局部周期系数$\mu(x,\varepsilon^{-1} x)$的广义Beltrami方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信