HMM adaptation techniques in training framework

S. Kwong, Qianhua He, Y. Chan
{"title":"HMM adaptation techniques in training framework","authors":"S. Kwong, Qianhua He, Y. Chan","doi":"10.1109/TENCON.2001.949612","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptation approach based on the Baum-Welch algorithm method. This method applies the same framework as is are used for training speech recognizers with abundant training data. The Baum-Welch adaptation method is adapted to all the parameters of the hidden Markov models (HMM) with adaptation data. If a large amount of adaptation data is available, these methods could gradually approximate the speaker-dependent ones. The approach is evaluated through the phoneme recognition task on the TIMIT corpus. On the speaker adaptation experiments, up to 91.48% recognition rate is achieved.","PeriodicalId":358168,"journal":{"name":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2001.949612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an adaptation approach based on the Baum-Welch algorithm method. This method applies the same framework as is are used for training speech recognizers with abundant training data. The Baum-Welch adaptation method is adapted to all the parameters of the hidden Markov models (HMM) with adaptation data. If a large amount of adaptation data is available, these methods could gradually approximate the speaker-dependent ones. The approach is evaluated through the phoneme recognition task on the TIMIT corpus. On the speaker adaptation experiments, up to 91.48% recognition rate is achieved.
训练框架中的HMM自适应技术
本文提出了一种基于Baum-Welch算法的自适应方法。该方法采用了与具有丰富训练数据的语音识别器训练相同的框架。Baum-Welch自适应方法适用于具有自适应数据的隐马尔可夫模型(HMM)的所有参数。如果有大量的适应数据,这些方法可以逐渐逼近依赖说话人的方法。通过TIMIT语料库上的音素识别任务对该方法进行了评价。在说话人自适应实验中,达到了91.48%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信