Using of behavioral information for enhancing Conditional Random Field-based map matching

Safaa Bataineh, A. Bahillo, L. E. Díez
{"title":"Using of behavioral information for enhancing Conditional Random Field-based map matching","authors":"Safaa Bataineh, A. Bahillo, L. E. Díez","doi":"10.1109/EURONAV.2017.7954210","DOIUrl":null,"url":null,"abstract":"In this paper we propose an enhancement to our previous Conditional Random Field (CRF) based map matching algorithm in order to make the map matched trajectory smoother and more feasible. The existing algorithm uses one feature, which is the distance with the input coordinate, and has the problem of non-smooth output trajectory. In this work we propose adding a new semantic layer to the map model that depends on the behavioral areas of walking, and to use that information in the map matching algorithm to enhance the smoothness of the output trajectory. The common walking lines of pedestrians will be determined and this behavioral information will be added as a feature to the CRF algorithm. A test version of the new algorithm is applied on a few examples and the results show smoother and more accurate map matched trajectories.","PeriodicalId":145124,"journal":{"name":"2017 European Navigation Conference (ENC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Navigation Conference (ENC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURONAV.2017.7954210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we propose an enhancement to our previous Conditional Random Field (CRF) based map matching algorithm in order to make the map matched trajectory smoother and more feasible. The existing algorithm uses one feature, which is the distance with the input coordinate, and has the problem of non-smooth output trajectory. In this work we propose adding a new semantic layer to the map model that depends on the behavioral areas of walking, and to use that information in the map matching algorithm to enhance the smoothness of the output trajectory. The common walking lines of pedestrians will be determined and this behavioral information will be added as a feature to the CRF algorithm. A test version of the new algorithm is applied on a few examples and the results show smoother and more accurate map matched trajectories.
利用行为信息增强基于条件随机场的地图匹配
本文对基于条件随机场(Conditional Random Field, CRF)的映射匹配算法进行了改进,使映射匹配轨迹更加平滑和可行。现有算法只使用一个特征,即与输入坐标的距离,存在输出轨迹不光滑的问题。在这项工作中,我们提出在地图模型中增加一个新的语义层,该语义层依赖于行走的行为区域,并在地图匹配算法中使用该信息来增强输出轨迹的平滑性。确定行人的共同行走路线,并将这些行为信息作为特征添加到CRF算法中。在几个算例上应用了新算法的测试版本,结果显示出更平滑、更精确的映射匹配轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信