Adaptive selection of Anchors in the Extended Kalman Filter tracking algorithm

J. Robles, Gregory Cardenas-Mansilla, R. Lehnert
{"title":"Adaptive selection of Anchors in the Extended Kalman Filter tracking algorithm","authors":"J. Robles, Gregory Cardenas-Mansilla, R. Lehnert","doi":"10.1109/WPNC.2014.6843294","DOIUrl":null,"url":null,"abstract":"In many localization systems, the Mobile Node (MN) takes distance measurements with reference nodes called Anchors (ANs) in order to estimate its position. In general, the MN can obtain a better estimation when it takes measurements with multiple ANs. Unfortunately, this can lead to consume more energy and generate more traffic in the network. In this paper, we present an adaptive mechanism for the localization algorithm Extended Kalman Filter. Here, the MN decides the number of ANs to use according to measurable error indicators, which can be used to have an idea about the MN's position error. In this way, if the error indicator suggests that the position error was high in previous periods, then our Selective Extended Kalman Filter (S-EKF) will take measurements with more ANs in the next periods to improve the position accuracy.","PeriodicalId":106193,"journal":{"name":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2014.6843294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many localization systems, the Mobile Node (MN) takes distance measurements with reference nodes called Anchors (ANs) in order to estimate its position. In general, the MN can obtain a better estimation when it takes measurements with multiple ANs. Unfortunately, this can lead to consume more energy and generate more traffic in the network. In this paper, we present an adaptive mechanism for the localization algorithm Extended Kalman Filter. Here, the MN decides the number of ANs to use according to measurable error indicators, which can be used to have an idea about the MN's position error. In this way, if the error indicator suggests that the position error was high in previous periods, then our Selective Extended Kalman Filter (S-EKF) will take measurements with more ANs in the next periods to improve the position accuracy.
扩展卡尔曼滤波跟踪算法中锚点的自适应选择
在许多定位系统中,移动节点(MN)与称为锚点(ANs)的参考节点进行距离测量,以估计其位置。一般情况下,MN在使用多个an进行测量时可以获得更好的估计,但这可能会导致网络中消耗更多的能量并产生更多的流量。本文提出了一种扩展卡尔曼滤波定位算法的自适应机制。在这里,MN根据可测量的误差指标来决定ann的使用数量,这可以用来了解MN的位置误差。这样,如果误差指标表明前一个周期的位置误差很高,那么我们的选择性扩展卡尔曼滤波器(S-EKF)将在下一个周期使用更多的an进行测量,以提高位置精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信