HighPU: a high privacy-utility approach to mining frequent itemset with differential privacy

Yabin Wang, Yi Qiao, Zhaobin Liu, Zhiyi Huang
{"title":"HighPU: a high privacy-utility approach to mining frequent itemset with differential privacy","authors":"Yabin Wang, Yi Qiao, Zhaobin Liu, Zhiyi Huang","doi":"10.1504/ijes.2019.10024129","DOIUrl":null,"url":null,"abstract":"In the field of data mining, frequent itemset mining (FIM) is a popular technique for analysing transaction datasets and establishing the foundation of association rules. Publishing frequent itemsets, however presents privacy challenges. Differential privacy provides strong privacy assurance to users. In this paper, we study the problem of mining frequent itemsets under the rigorous differential privacy model. We propose an approach, called HighPU, which achieves both high data utility and high degree of privacy in FIM. HighPU begins by truncating transactions over the original dataset. Then HighPU directly searches for maximal frequent itemsets. And we use a consistent approach to improve the accuracy of the results. Extensive experiments using several real datasets illustrate that HighPU significantly outperforms the current state of the art.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2019.10024129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the field of data mining, frequent itemset mining (FIM) is a popular technique for analysing transaction datasets and establishing the foundation of association rules. Publishing frequent itemsets, however presents privacy challenges. Differential privacy provides strong privacy assurance to users. In this paper, we study the problem of mining frequent itemsets under the rigorous differential privacy model. We propose an approach, called HighPU, which achieves both high data utility and high degree of privacy in FIM. HighPU begins by truncating transactions over the original dataset. Then HighPU directly searches for maximal frequent itemsets. And we use a consistent approach to improve the accuracy of the results. Extensive experiments using several real datasets illustrate that HighPU significantly outperforms the current state of the art.
HighPU:一种高隐私效用的方法,用于挖掘具有差分隐私的频繁项集
在数据挖掘领域,频繁项集挖掘(FIM)是一种常用的分析事务数据集和建立关联规则基础的技术。然而,发布频繁的项集会带来隐私方面的挑战。差分隐私为用户提供了强有力的隐私保障。本文研究了严格差分隐私模型下频繁项集的挖掘问题。我们提出了一种称为HighPU的方法,它在FIM中实现了高数据效用和高度隐私。HighPU首先截断原始数据集上的事务。然后HighPU直接搜索最大频繁项集。我们使用一致的方法来提高结果的准确性。使用几个真实数据集进行的大量实验表明,HighPU的性能明显优于当前的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信