Coherence-Free Multiview: Enabling Reference-Discerning Data Placement on GPU

Guoyang Chen, Xipeng Shen
{"title":"Coherence-Free Multiview: Enabling Reference-Discerning Data Placement on GPU","authors":"Guoyang Chen, Xipeng Shen","doi":"10.1145/2925426.2926277","DOIUrl":null,"url":null,"abstract":"A Graphic Processing Unit (GPU) system is typically equipped with many types of memory (e.g., global, constant, texture, shared, cache). Data placement determines what data are placed on which type of memory, essential for GPU memory performance. Prior optimizations of data placement always require a single view of a data object on memory, which limits the optimization effectiveness. In this work, we propose coherence-free multiview, an approach that allows multiple views of a single data object to co-exist on GPU memory during a GPU kernel execution. We demonstrate that under certain conditions, the multiple views can remain incoherent while facilitating enhanced data placement. We present a theorem and some compiler support to ensure the soundness of the usage of coherence-free multiview. We further develop reference-discerning data placement, a new way to enhance data placements on GPU. It enables more flexible data placements by using coherence-free multiview to leverage the slack in coherence requirement of some GPU programs. Experiments on three types of GPU systems show that, with less than 200KB space cost, the new data placement technique can provide a 1.6X average (up to 4.27X) speedup.","PeriodicalId":422112,"journal":{"name":"Proceedings of the 2016 International Conference on Supercomputing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2925426.2926277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A Graphic Processing Unit (GPU) system is typically equipped with many types of memory (e.g., global, constant, texture, shared, cache). Data placement determines what data are placed on which type of memory, essential for GPU memory performance. Prior optimizations of data placement always require a single view of a data object on memory, which limits the optimization effectiveness. In this work, we propose coherence-free multiview, an approach that allows multiple views of a single data object to co-exist on GPU memory during a GPU kernel execution. We demonstrate that under certain conditions, the multiple views can remain incoherent while facilitating enhanced data placement. We present a theorem and some compiler support to ensure the soundness of the usage of coherence-free multiview. We further develop reference-discerning data placement, a new way to enhance data placements on GPU. It enables more flexible data placements by using coherence-free multiview to leverage the slack in coherence requirement of some GPU programs. Experiments on three types of GPU systems show that, with less than 200KB space cost, the new data placement technique can provide a 1.6X average (up to 4.27X) speedup.
无相干多视图:在GPU上启用参考识别数据放置
图形处理单元(GPU)系统通常配备许多类型的内存(例如,全局,常量,纹理,共享,缓存)。数据放置决定了哪些数据放置在哪种类型的内存上,这对GPU内存性能至关重要。数据放置的先前优化总是需要内存中数据对象的单一视图,这限制了优化的有效性。在这项工作中,我们提出了无相干多视图,这种方法允许在GPU内核执行期间在GPU内存上共存单个数据对象的多个视图。我们证明,在某些条件下,多个视图可以保持不一致,同时促进增强的数据放置。我们给出了一个定理和一些编译器支持来保证无相干多视图使用的合理性。我们进一步开发了参考识别数据放置,这是一种增强GPU上数据放置的新方法。它通过使用无相干的多视图来利用一些GPU程序在相干性要求上的松弛,从而实现更灵活的数据放置。在三种类型的GPU系统上的实验表明,在小于200KB的空间成本下,新的数据放置技术可以提供1.6倍(最高4.27倍)的平均加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信