Assessment of Temperature Sensitivity Analysis and Temperature Regression Model for Predicting Seasonal Bank Load Patterns

Minghao Piao, J. Park, H. Lee, Jin Shin, Duck JinChai, K. Ryu
{"title":"Assessment of Temperature Sensitivity Analysis and Temperature Regression Model for Predicting Seasonal Bank Load Patterns","authors":"Minghao Piao, J. Park, H. Lee, Jin Shin, Duck JinChai, K. Ryu","doi":"10.1109/IWSCA.2008.34","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the potential of air conditioning load management by solve the temperature regression model of load patterns for Banks and the temperature sensitivity depends on temperature change. The load survey system has been applied to record the Bank load of sampling Banks in Korea power system. To analyze the impact of temperature rise to the Bank load data, we executed statistic polynomial regression and the temperature sensitivity analysis on the Bank load data. Before that, we applied data preprocessing to make the data clear. It found that the week time is more sensitive than weekend and when the temperature is less deviated from the main tendency, the regression model can predict the load patterns with higher accuracy.","PeriodicalId":425055,"journal":{"name":"2008 IEEE International Workshop on Semantic Computing and Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Workshop on Semantic Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSCA.2008.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to investigate the potential of air conditioning load management by solve the temperature regression model of load patterns for Banks and the temperature sensitivity depends on temperature change. The load survey system has been applied to record the Bank load of sampling Banks in Korea power system. To analyze the impact of temperature rise to the Bank load data, we executed statistic polynomial regression and the temperature sensitivity analysis on the Bank load data. Before that, we applied data preprocessing to make the data clear. It found that the week time is more sensitive than weekend and when the temperature is less deviated from the main tendency, the regression model can predict the load patterns with higher accuracy.
温度敏感性分析评估及温度回归模型预测季节性银行负荷模式
本文的目的是通过求解银行负荷模式的温度回归模型和温度敏感性依赖于温度变化来探讨空调负荷管理的潜力。负荷调查系统已应用于韩国电力系统抽样银行的负荷记录。为了分析温度升高对银行负荷数据的影响,我们对银行负荷数据进行了统计多项式回归和温度敏感性分析。在此之前,我们对数据进行了预处理,使数据清晰。研究发现,周时间比周末更敏感,当温度偏离主趋势较小时,回归模型对负荷模式的预测精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信