Modeling and Simulation of Spark Streaming

Jia-Chun Lin, Ming-Chang Lee, Ingrid Chieh Yu, E. Johnsen
{"title":"Modeling and Simulation of Spark Streaming","authors":"Jia-Chun Lin, Ming-Chang Lee, Ingrid Chieh Yu, E. Johnsen","doi":"10.1109/AINA.2018.00068","DOIUrl":null,"url":null,"abstract":"As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed \"on the fly\" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.","PeriodicalId":239730,"journal":{"name":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2018.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

As more and more devices connect to Internet of Things, unbounded streams of data will be generated, which have to be processed "on the fly" in order to trigger automated actions and deliver real-time services. Spark Streaming is a popular realtime stream processing framework. To make efficient use of Spark Streaming and achieve stable stream processing, it requires a careful interplay between different parameter configurations. Mistakes may lead to significant resource overprovisioning and bad performance. To alleviate such issues, this paper develops an executable and configurable model named SSP (stands for Spark Streaming Processing) to model and simulate Spark Streaming. SSP is written in ABS, which is a formal, executable, and object-oriented language for modeling distributed systems by means of concurrent object groups. SSP allows users to rapidly evaluate and compare different parameter configurations without deploying their applications on a cluster/cloud. The simulation results show that SSP is able to mimic Spark Streaming in different scenarios.
火花流的建模与仿真
随着越来越多的设备连接到物联网,将产生无限的数据流,这些数据流必须“在飞行中”进行处理,以触发自动化操作并提供实时服务。Spark Streaming是一个流行的实时流处理框架。为了有效地利用Spark Streaming并实现稳定的流处理,需要在不同参数配置之间进行仔细的相互作用。错误可能会导致严重的资源过剩和糟糕的性能。为了解决这些问题,本文开发了一个可执行和可配置的模型SSP(代表Spark Streaming Processing)来建模和模拟Spark Streaming。SSP是用ABS编写的,ABS是一种正式的、可执行的、面向对象的语言,用于通过并发对象组对分布式系统进行建模。SSP允许用户快速评估和比较不同的参数配置,而无需将应用程序部署在集群/云上。仿真结果表明,SSP能够模拟不同场景下的Spark Streaming。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信