Enhanced maximal nonsaturating effort adaptive control

K. Cheok, H.X. Hu, C.Q. Liu, N. K. Loh
{"title":"Enhanced maximal nonsaturating effort adaptive control","authors":"K. Cheok, H.X. Hu, C.Q. Liu, N. K. Loh","doi":"10.1109/ISIC.1988.65497","DOIUrl":null,"url":null,"abstract":"An enhanced maximal nonsaturating effort adaptive control (EMNEAC) scheme for servo-control systems that have input saturation and deadbands is described. The proposed EMNEAC builds on two key online enhancement techniques: a knowledge-enhanced parameter identification (KEPI) algorithm and a maximal nonsaturating effort selection (MNES) algorithm. The KEPI algorithm uses a priori information about the characteristics of the physical system being controlled. It generates parameter estimates which lie within admissible ranges of physical values. The EMNEAC scheme incorporates an automatic self-selection of suitable closed-loop performance specifications for online self-tuning control design. It uses heuristic information derived from computed control input and designs a controller whose output level is kept with the admissible set of control. The result is that the EMNEAC scheme puts out maximal control effort for high tracking performance without saturating the control input of the system. It is more robust in terms of stability and achieves superior performance over other standard self-tuning control algorithms.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An enhanced maximal nonsaturating effort adaptive control (EMNEAC) scheme for servo-control systems that have input saturation and deadbands is described. The proposed EMNEAC builds on two key online enhancement techniques: a knowledge-enhanced parameter identification (KEPI) algorithm and a maximal nonsaturating effort selection (MNES) algorithm. The KEPI algorithm uses a priori information about the characteristics of the physical system being controlled. It generates parameter estimates which lie within admissible ranges of physical values. The EMNEAC scheme incorporates an automatic self-selection of suitable closed-loop performance specifications for online self-tuning control design. It uses heuristic information derived from computed control input and designs a controller whose output level is kept with the admissible set of control. The result is that the EMNEAC scheme puts out maximal control effort for high tracking performance without saturating the control input of the system. It is more robust in terms of stability and achieves superior performance over other standard self-tuning control algorithms.<>
增强的最大非饱和力自适应控制
针对具有输入饱和和死带的伺服控制系统,提出了一种增强的最大不饱和自适应控制(EMNEAC)方案。提出的EMNEAC基于两种关键的在线增强技术:知识增强参数识别(KEPI)算法和最大非饱和努力选择(MNES)算法。KEPI算法使用关于被控制的物理系统特征的先验信息。它生成的参数估计在物理值的可接受范围内。EMNEAC方案包含一个自动自选择合适的闭环性能规格,用于在线自整定控制设计。它利用由计算控制输入得到的启发式信息,设计了一个输出电平与允许控制集保持一致的控制器。结果表明,EMNEAC方案在不使系统控制输入饱和的情况下,为获得高跟踪性能付出了最大的控制努力。它在稳定性方面更具鲁棒性,并且比其他标准自调谐控制算法实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信