Granular based analytical hierarchical process

A. Alsawy, H. Hefny
{"title":"Granular based analytical hierarchical process","authors":"A. Alsawy, H. Hefny","doi":"10.1109/GrC.2013.6740373","DOIUrl":null,"url":null,"abstract":"Analytical Hierarchical Process (AHP) is one of the famous methods of solving multi criteria decision making problems, in some cases the preference ratios can be represented by different types of uncertain numbers such as: interval numbers, fuzzy numbers and rough numbers. These heterogeneous types of numbers are forming a challenge in computing and choosing the best alternative. This work proposes a Unified Granular Number (UGN) that we call G-Number to act as a general form for any uncertain number. G-Number represents a higher level of abstract that hold only common properties of different types of uncertain numbers while ignoring particular properties which are not necessary to be considered in such higher abstract level. The main benefit of using such a proposed G-number is its ability to represent all types of granular numbers using unified formality that greatly simplifies arithmetic. G-Number based Analytical Hierarchical Process (GAHP) is introduced to overcome the limitations of handling different types of uncertainty representations in multi criteria decision making problems.","PeriodicalId":415445,"journal":{"name":"2013 IEEE International Conference on Granular Computing (GrC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Granular Computing (GrC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GrC.2013.6740373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Analytical Hierarchical Process (AHP) is one of the famous methods of solving multi criteria decision making problems, in some cases the preference ratios can be represented by different types of uncertain numbers such as: interval numbers, fuzzy numbers and rough numbers. These heterogeneous types of numbers are forming a challenge in computing and choosing the best alternative. This work proposes a Unified Granular Number (UGN) that we call G-Number to act as a general form for any uncertain number. G-Number represents a higher level of abstract that hold only common properties of different types of uncertain numbers while ignoring particular properties which are not necessary to be considered in such higher abstract level. The main benefit of using such a proposed G-number is its ability to represent all types of granular numbers using unified formality that greatly simplifies arithmetic. G-Number based Analytical Hierarchical Process (GAHP) is introduced to overcome the limitations of handling different types of uncertainty representations in multi criteria decision making problems.
基于粒度的分层分析过程
层次分析法(AHP)是解决多准则决策问题的著名方法之一,在某些情况下,偏好比可以用不同类型的不确定数表示,如区间数、模糊数和粗糙数。这些异构类型的数字在计算和选择最佳替代方案方面构成了挑战。本文提出了一个统一颗粒数(UGN),我们称之为g数,作为任何不确定数的一般形式。g数代表了一种更高层次的抽象,它只包含不同类型不确定数的共同属性,而忽略了在这种更高抽象层次中不需要考虑的特定属性。使用这种建议的g数的主要好处是它能够使用统一的形式表示所有类型的粒度数,从而大大简化了算术。为了克服多准则决策问题中处理不同类型不确定性表示的局限性,引入了基于g数的层次分析法(GAHP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信