Optimizing Industrial Applications for Heterogeneous HPC Systems: The OPTIMA Project Intermediate stage

D. Theodoropoulos, Olivier Michel, Pavlos Malakonakis, Konstantinos Georgopoulos, G. Isotton, D. Pnevmatikatos, I. Papaefstathiou, G. Perna, Marisa Zanotti, Panagiotis Miliadis, Panagiotis Mpakos, Chloe Alverti, Aggelos D. Ioannou, Max Engelen, A. Kahira, I. Mavroidis
{"title":"Optimizing Industrial Applications for Heterogeneous HPC Systems: The OPTIMA Project Intermediate stage","authors":"D. Theodoropoulos, Olivier Michel, Pavlos Malakonakis, Konstantinos Georgopoulos, G. Isotton, D. Pnevmatikatos, I. Papaefstathiou, G. Perna, Marisa Zanotti, Panagiotis Miliadis, Panagiotis Mpakos, Chloe Alverti, Aggelos D. Ioannou, Max Engelen, A. Kahira, I. Mavroidis","doi":"10.23919/DATE56975.2023.10136980","DOIUrl":null,"url":null,"abstract":"OPTIMA is an SME-driven project (intermediate stage) that aims to port and optimize industrial applications and a set of open-source libraries into two novel FPGA-populated HPC systems. Target applications are from the domain of robotics simulation, underground analysis and computational fluid dy-namics (CFD), where data processing is based on differential equations, matrix-matrix and matrix-vector operations. Moreover, the OPTIMA OPen Source (OOPS) library will support basic linear algebraic operations, sparse matrix-vector arithmetic, as well as computer-aided engineering (CAE) solvers. The OPTIMA target platforms are JUMAX, an HPC system that couples an AMD Epyc Server with Maxeler FPGA-based Dataflow Engines (DFEs), and server-class machines with Alveo FPGA cards in-stalled. Experimental results on applications up to now, show that performance on robotic simulation can be enhanced up to 1.2x, CFD calculations up to 4.7x, and BLAS routines up to 7x compared to optimized software implementations from OpenBLAS.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

OPTIMA is an SME-driven project (intermediate stage) that aims to port and optimize industrial applications and a set of open-source libraries into two novel FPGA-populated HPC systems. Target applications are from the domain of robotics simulation, underground analysis and computational fluid dy-namics (CFD), where data processing is based on differential equations, matrix-matrix and matrix-vector operations. Moreover, the OPTIMA OPen Source (OOPS) library will support basic linear algebraic operations, sparse matrix-vector arithmetic, as well as computer-aided engineering (CAE) solvers. The OPTIMA target platforms are JUMAX, an HPC system that couples an AMD Epyc Server with Maxeler FPGA-based Dataflow Engines (DFEs), and server-class machines with Alveo FPGA cards in-stalled. Experimental results on applications up to now, show that performance on robotic simulation can be enhanced up to 1.2x, CFD calculations up to 4.7x, and BLAS routines up to 7x compared to optimized software implementations from OpenBLAS.
优化异构高性能计算系统的工业应用:OPTIMA项目中间阶段
OPTIMA是一个中小型企业驱动的项目(中间阶段),旨在将工业应用程序和一组开源库移植和优化到两个新型fpga填充的HPC系统中。目标应用来自机器人仿真,地下分析和计算流体动力学(CFD)领域,其中数据处理基于微分方程,矩阵-矩阵和矩阵-向量运算。此外,OPTIMA开源(OOPS)库将支持基本的线性代数运算、稀疏矩阵向量算法以及计算机辅助工程(CAE)求解器。OPTIMA的目标平台是JUMAX,这是一种高性能计算系统,它将AMD Epyc服务器与Maxeler基于FPGA的数据流引擎(dfe)结合在一起,以及内置Alveo FPGA卡的服务器级机器。到目前为止,在应用程序上的实验结果表明,与OpenBLAS优化软件实现相比,机器人仿真性能可提高1.2倍,CFD计算可提高4.7倍,BLAS例程可提高7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信