Mitchell Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle
{"title":"From Developer Networks to Verified Communities: A Fine-Grained Approach","authors":"Mitchell Joblin, W. Mauerer, S. Apel, J. Siegmund, D. Riehle","doi":"10.1109/ICSE.2015.73","DOIUrl":null,"url":null,"abstract":"Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.","PeriodicalId":330487,"journal":{"name":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 37th IEEE International Conference on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2015.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.