{"title":"Landslide Identification Using Optimized Deep Learning Framework Through Data Routing in IoT Application","authors":"L. Lijesh, G. Arockia Selva Saroja","doi":"10.1142/s021962202250095x","DOIUrl":null,"url":null,"abstract":"This paper develops an approach for detecting landslide using IoT. The simulation of IoT is the preliminary step that helps to collect data. The suggested Water Particle Grey Wolf Optimization (WPGWO) is used for the routing. The Water Cycle Algorithm (WCA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) are combined in the suggested method (WPGWO). The fitness is newly modeled considering energy, link cost, distance, and delay. The maintenance of routes is done to assess the dependability of the network topology. The landslide detection process is carried out at the IoT base station. In feature selection, angular distance is used. Oversampling is used to enrich the data, and Deep Residual Network (DRN) | used for landslide identification | is trained using the proposed Water Cycle Particle Swarm Optimization (WCPSO) method, which combines WCA and PSO. The proposed WCPSO-based DRN offered effective performance with the highest energy of 0.049[Formula: see text]J, throughput of 0.0495, accuracy of 95.7%, sensitivity of 97.2% and specificity of 93.9%. This approach demonstrated improved robustness and produced the global best optimal solution. For the proposed WPGWO, WCA, GWO, and PSO are linked to improve performance in determining the optimum routes. When comparing with existing methods the proposed WCPSO-based DRN offered effective performance.","PeriodicalId":257183,"journal":{"name":"International Journal of Information Technology & Decision Making","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology & Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021962202250095x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops an approach for detecting landslide using IoT. The simulation of IoT is the preliminary step that helps to collect data. The suggested Water Particle Grey Wolf Optimization (WPGWO) is used for the routing. The Water Cycle Algorithm (WCA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO) are combined in the suggested method (WPGWO). The fitness is newly modeled considering energy, link cost, distance, and delay. The maintenance of routes is done to assess the dependability of the network topology. The landslide detection process is carried out at the IoT base station. In feature selection, angular distance is used. Oversampling is used to enrich the data, and Deep Residual Network (DRN) | used for landslide identification | is trained using the proposed Water Cycle Particle Swarm Optimization (WCPSO) method, which combines WCA and PSO. The proposed WCPSO-based DRN offered effective performance with the highest energy of 0.049[Formula: see text]J, throughput of 0.0495, accuracy of 95.7%, sensitivity of 97.2% and specificity of 93.9%. This approach demonstrated improved robustness and produced the global best optimal solution. For the proposed WPGWO, WCA, GWO, and PSO are linked to improve performance in determining the optimum routes. When comparing with existing methods the proposed WCPSO-based DRN offered effective performance.