{"title":"mmFlow: Facilitating At-Home Spirometry with 5G Smart Devices","authors":"Aakriti Adhikari, A. Hetherington, Sanjib Sur","doi":"10.1109/SECON52354.2021.9491616","DOIUrl":null,"url":null,"abstract":"Respiratory diseases, like Asthma, COPD, have been a significant public health challenge over decades. Portable spirometers are effective in continuous monitoring of respiratory syndromes out-of-clinic. However, existing systems are either costly or provide limited information and require extra hardware. In this paper, we present mmFlow, a low-barrier means to perform at-home spirometry tests using 5G smart devices. mmFlow works like regular spirometers, where a user forcibly exhales onto a device; but instead of relying on special-purpose hardware, mmFlow leverages built-in millimeter-wave technology in general-purpose, ubiquitous mobile devices. mmFlow analyzes the tiny vibrations created by the airflow on the device surface and combines wireless signal processing with deep learning to enable a software-only spirometry solution. From empirical evaluations, we find that, when device distance is fixed, mmFlow can predict the spirometry indicators with performance comparable to inclinic spirometers with <5% prediction errors. Besides, mmFlow generalizes well under different environments and human conditions, making it promising for out-of-clinic daily monitoring.","PeriodicalId":120945,"journal":{"name":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON52354.2021.9491616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Respiratory diseases, like Asthma, COPD, have been a significant public health challenge over decades. Portable spirometers are effective in continuous monitoring of respiratory syndromes out-of-clinic. However, existing systems are either costly or provide limited information and require extra hardware. In this paper, we present mmFlow, a low-barrier means to perform at-home spirometry tests using 5G smart devices. mmFlow works like regular spirometers, where a user forcibly exhales onto a device; but instead of relying on special-purpose hardware, mmFlow leverages built-in millimeter-wave technology in general-purpose, ubiquitous mobile devices. mmFlow analyzes the tiny vibrations created by the airflow on the device surface and combines wireless signal processing with deep learning to enable a software-only spirometry solution. From empirical evaluations, we find that, when device distance is fixed, mmFlow can predict the spirometry indicators with performance comparable to inclinic spirometers with <5% prediction errors. Besides, mmFlow generalizes well under different environments and human conditions, making it promising for out-of-clinic daily monitoring.