Non-Modal Analysis of Multigrid Schemes for the High-Order Flux Reconstruction Method

A. Hurtado-de-Mendoza, J. Kou, S. Joshi, K. Puri, C. Hirsch, E. Ferrer
{"title":"Non-Modal Analysis of Multigrid Schemes for the High-Order Flux Reconstruction Method","authors":"A. Hurtado-de-Mendoza, J. Kou, S. Joshi, K. Puri, C. Hirsch, E. Ferrer","doi":"10.23967/WCCM-ECCOMAS.2020.221","DOIUrl":null,"url":null,"abstract":"Abstract. The present study introduces an application of the non-modal analysis to multigrid operators with explicit Runge-Kutta smoothers in the context of Flux Reconstruction discretizations of the linear convection-diffusion equation. A dissipation curve is obtained that reflects upon the convergence properties of the multigrid operator. The number of smoothing steps, the type of cycle (V/W) and the combination of pand h-multigrid are taken into account in order to find those configurations which yield faster convergence rates. The analysis is carried out for polynomial orders up to P = 6, in 1D and 2D for varying degrees of convection (Péclet number), as well as for high aspect ratio cells. The non-modal analysis can support existing evidence on the behaviour of multigrid schemes. W-cycles, a higher number of coarse-level sweeps or the combined use of hp-multigrid are shown to increase the error dissipation, while higher degrees of convection and/or high aspect-ratio cells both decrease the error dissipation rate.","PeriodicalId":148883,"journal":{"name":"14th WCCM-ECCOMAS Congress","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th WCCM-ECCOMAS Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/WCCM-ECCOMAS.2020.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The present study introduces an application of the non-modal analysis to multigrid operators with explicit Runge-Kutta smoothers in the context of Flux Reconstruction discretizations of the linear convection-diffusion equation. A dissipation curve is obtained that reflects upon the convergence properties of the multigrid operator. The number of smoothing steps, the type of cycle (V/W) and the combination of pand h-multigrid are taken into account in order to find those configurations which yield faster convergence rates. The analysis is carried out for polynomial orders up to P = 6, in 1D and 2D for varying degrees of convection (Péclet number), as well as for high aspect ratio cells. The non-modal analysis can support existing evidence on the behaviour of multigrid schemes. W-cycles, a higher number of coarse-level sweeps or the combined use of hp-multigrid are shown to increase the error dissipation, while higher degrees of convection and/or high aspect-ratio cells both decrease the error dissipation rate.
高阶通量重建法多网格方案的非模态分析
摘要本文介绍了非模态分析在线性对流扩散方程的通量重建离散化中对具有显式龙格-库塔平滑的多网格算子的应用。得到了反映多重网格算子收敛性的耗散曲线。为了找到收敛速度更快的结构,我们考虑了平滑步骤数、周期类型(V/W)以及p&h多重网格的组合。对P = 6以下的多项式阶进行分析,在一维和二维中对不同程度的对流(psamclet数)以及高纵横比细胞进行分析。非模态分析可以支持现有的多网格方案的行为证据。w循环、更高数量的粗级扫描或hp-多重网格的组合使用可以增加误差耗散,而更高程度的对流和/或高纵横比单元都可以降低误差耗散率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信