Two-dimensional orthogonal complete complementary codes

P. Farkaš, M. Turcsány
{"title":"Two-dimensional orthogonal complete complementary codes","authors":"P. Farkaš, M. Turcsány","doi":"10.1109/TIC.2003.1249079","DOIUrl":null,"url":null,"abstract":"Two families of two-dimensional orthogonal complete complementary codes (2D-OCCC) are presented They can be constructed, for example, over binary or complex symbols. The new 2D-OCCC retain most of the properties of the 1D-OCCC. The autocorrelation function is equal to zero for all nonzero shifts in both dimensions of any signature selected from the code. The cross-correlation for any pair of different signatures is equal to zero for all possible shifts in both dimensions.","PeriodicalId":177770,"journal":{"name":"SympoTIC'03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications","volume":"56 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SympoTIC'03. Joint 1st Workshop on Mobile Future and Symposium on Trends in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIC.2003.1249079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Two families of two-dimensional orthogonal complete complementary codes (2D-OCCC) are presented They can be constructed, for example, over binary or complex symbols. The new 2D-OCCC retain most of the properties of the 1D-OCCC. The autocorrelation function is equal to zero for all nonzero shifts in both dimensions of any signature selected from the code. The cross-correlation for any pair of different signatures is equal to zero for all possible shifts in both dimensions.
二维正交完全互补码
提出了两类二维正交完全互补码(2D-OCCC),它们可以在二进制或复数符号上构造。新的2D-OCCC保留了1D-OCCC的大部分特性。自相关函数对于从代码中选择的任何签名在两个维度上的所有非零移位都等于零。对于两个维度上所有可能的移位,任何一对不同签名的相互关系都等于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信