Solid-State dToF LiDAR System Using an Eight-Channel Addressable, 20W/Ch Transmitter, and a 128x128 SPAD Receiver with SNR-Based Pixel Binning and Resolution Upscaling

Shenglong Zhuo, Lei Zhao, Tao Xia, Lei Wang, Shi-min Shi, Yifan Wu, Chang Liu, Chill Wang, Yuwei Wang, Yuan Li, Hengwei Yu, Jiqing Xu, Aaron Wang, Zhihong Lin, Yun Chen, Rui Bai, Xuefeng Chen, Patrick Chiang
{"title":"Solid-State dToF LiDAR System Using an Eight-Channel Addressable, 20W/Ch Transmitter, and a 128x128 SPAD Receiver with SNR-Based Pixel Binning and Resolution Upscaling","authors":"Shenglong Zhuo, Lei Zhao, Tao Xia, Lei Wang, Shi-min Shi, Yifan Wu, Chang Liu, Chill Wang, Yuwei Wang, Yuan Li, Hengwei Yu, Jiqing Xu, Aaron Wang, Zhihong Lin, Yun Chen, Rui Bai, Xuefeng Chen, Patrick Chiang","doi":"10.1109/CICC53496.2022.9772823","DOIUrl":null,"url":null,"abstract":"The ability to capture the spatial dimensions of the world around us is growing in importance, with the widespread adoption of 3D-sensing used today for secure facial authentication, AR occlusion, robotic vision and SLAM, autonomous driving, and 3D-reconstruction. Most state-of-the-art light detection and ranging (LiDAR) systems mainly focus on the sensor design [1]–[4]. However, the optical-electrical system of LiDAR is complex, requiring hardware and software co-optimization across the entire signal chain: high-power sub-1ns pulsed laser drivers, high-efficiency lasers, class-1 laser eye-safety, optical lens for focusing or diffusion, high-SNR single-photon detection receiver arrays, and machine learning (ML) based computational photography.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The ability to capture the spatial dimensions of the world around us is growing in importance, with the widespread adoption of 3D-sensing used today for secure facial authentication, AR occlusion, robotic vision and SLAM, autonomous driving, and 3D-reconstruction. Most state-of-the-art light detection and ranging (LiDAR) systems mainly focus on the sensor design [1]–[4]. However, the optical-electrical system of LiDAR is complex, requiring hardware and software co-optimization across the entire signal chain: high-power sub-1ns pulsed laser drivers, high-efficiency lasers, class-1 laser eye-safety, optical lens for focusing or diffusion, high-SNR single-photon detection receiver arrays, and machine learning (ML) based computational photography.
采用8通道可寻址20W/Ch发射器和128x128 SPAD接收器的固态dof激光雷达系统,具有基于信噪比的像素分帧和分辨率提升
捕捉我们周围世界的空间维度的能力正变得越来越重要,如今3d传感被广泛应用于安全的面部认证、AR闭塞、机器人视觉和SLAM、自动驾驶和3d重建。大多数最先进的光探测和测距(LiDAR)系统主要集中在传感器设计上。然而,激光雷达的光电系统是复杂的,需要在整个信号链中进行硬件和软件协同优化:高功率低于1ns的脉冲激光驱动器,高效激光器,1类激光人眼安全,聚焦或扩散光学透镜,高信噪比单光子探测接收器阵列,以及基于机器学习(ML)的计算摄影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信