{"title":"B-Neck: A Distributed and Quiescent Max-Min Fair Algorithm","authors":"A. Mozo, José Luis López-Presa, Antonio Fernández","doi":"10.1145/1993806.1993841","DOIUrl":null,"url":null,"abstract":"The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate ?i such that no session s can increase ?s without causing another session s' to end up with a rate ?s'","PeriodicalId":258309,"journal":{"name":"2011 IEEE 10th International Symposium on Network Computing and Applications","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1993806.1993841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The problem of fairly distributing the capacity of a network among a set of sessions has been widely studied. In this problem, each session connects via a single path a source and a destination, and its goal is to maximize its assigned transmission rate (i.e., its throughput). Since the links of the network have limited bandwidths, some criterion has to be defined to fairly distribute their capacity among the sessions. A popular criterion is max-min fairness that, in short, guarantees that each session i gets a rate ?i such that no session s can increase ?s without causing another session s' to end up with a rate ?s'