Water Quality Management Guidelines to Reduce Mortality Rate of Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus) Fingerlings Raised in Outdoor Earthen Ponds with a Recirculating Aquaculture System Using Machine Learning Techniques
Putra Ali Syahbana Matondang, W. Taparhudee, R. Yoonpundh, Roongparit Jongjaraunsuk
{"title":"Water Quality Management Guidelines to Reduce Mortality Rate of Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus) Fingerlings Raised in Outdoor Earthen Ponds with a Recirculating Aquaculture System Using Machine Learning Techniques","authors":"Putra Ali Syahbana Matondang, W. Taparhudee, R. Yoonpundh, Roongparit Jongjaraunsuk","doi":"10.55164/ajstr.v25i4.247049","DOIUrl":null,"url":null,"abstract":"Machine learning techniques have been widely adopted over the last few decades, especially in fisheries. This study aimed to determine the best practice of machine learning techniques with a decision tree algorithm in reducing the mortality rate of red tilapia (Oreochromis niloticus x Oreochromis mossambicus) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. The study phase begins with collecting water quality parameters. The parameters were measured in the form of dissolved oxygen (mg L-1), pH, temperature (°C), total ammonia nitrogen (mg L-1), nitrite-nitrogen (mg L-1), alkalinity (mg L-1), transparency (cm), and mortality rate (fish day-1). Data Modelling was carried out using 10-fold cross-validation. The results of the performance measurement obtained an accuracy of 89.67% with ± 5.11% (micro average: 89.60%), a precision of 86.71% ± 18.02% (micro average: 80.00%), and recall of 72.50% ± 24.86% (micro average: 71.79%), with the most influential water quality parameter being nitrite-nitrogen (mg L-1). Based on the results of this study show that data classification using a decision tree algorithm can be used as a reference to determine the decisions or actions of fish farmers in reducing the mortality rate of red tilapia fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system.","PeriodicalId":426475,"journal":{"name":"ASEAN Journal of Scientific and Technological Reports","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Scientific and Technological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55164/ajstr.v25i4.247049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning techniques have been widely adopted over the last few decades, especially in fisheries. This study aimed to determine the best practice of machine learning techniques with a decision tree algorithm in reducing the mortality rate of red tilapia (Oreochromis niloticus x Oreochromis mossambicus) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. The study phase begins with collecting water quality parameters. The parameters were measured in the form of dissolved oxygen (mg L-1), pH, temperature (°C), total ammonia nitrogen (mg L-1), nitrite-nitrogen (mg L-1), alkalinity (mg L-1), transparency (cm), and mortality rate (fish day-1). Data Modelling was carried out using 10-fold cross-validation. The results of the performance measurement obtained an accuracy of 89.67% with ± 5.11% (micro average: 89.60%), a precision of 86.71% ± 18.02% (micro average: 80.00%), and recall of 72.50% ± 24.86% (micro average: 71.79%), with the most influential water quality parameter being nitrite-nitrogen (mg L-1). Based on the results of this study show that data classification using a decision tree algorithm can be used as a reference to determine the decisions or actions of fish farmers in reducing the mortality rate of red tilapia fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system.