Water Quality Management Guidelines to Reduce Mortality Rate of Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus) Fingerlings Raised in Outdoor Earthen Ponds with a Recirculating Aquaculture System Using Machine Learning Techniques

Putra Ali Syahbana Matondang, W. Taparhudee, R. Yoonpundh, Roongparit Jongjaraunsuk
{"title":"Water Quality Management Guidelines to Reduce Mortality Rate of Red Tilapia (Oreochromis niloticus x Oreochromis mossambicus) Fingerlings Raised in Outdoor Earthen Ponds with a Recirculating Aquaculture System Using Machine Learning Techniques","authors":"Putra Ali Syahbana Matondang, W. Taparhudee, R. Yoonpundh, Roongparit Jongjaraunsuk","doi":"10.55164/ajstr.v25i4.247049","DOIUrl":null,"url":null,"abstract":"Machine learning techniques have been widely adopted over the last few decades, especially in fisheries. This study aimed to determine the best practice of machine learning techniques with a decision tree algorithm in reducing the mortality rate of red tilapia (Oreochromis niloticus x Oreochromis mossambicus) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. The study phase begins with collecting water quality parameters. The parameters were measured in the form of dissolved oxygen (mg L-1), pH, temperature (°C), total ammonia nitrogen (mg L-1), nitrite-nitrogen (mg L-1), alkalinity (mg L-1), transparency (cm), and mortality rate (fish day-1).  Data Modelling was carried out using 10-fold cross-validation. The results of the performance measurement obtained an accuracy of 89.67% with ± 5.11% (micro average: 89.60%), a precision of 86.71% ± 18.02% (micro average: 80.00%), and recall of 72.50% ± 24.86% (micro average: 71.79%), with the most influential water quality parameter being nitrite-nitrogen (mg L-1). Based on the results of this study show that data classification using a decision tree algorithm can be used as a reference to determine the decisions or actions of fish farmers in reducing the mortality rate of red tilapia fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system.","PeriodicalId":426475,"journal":{"name":"ASEAN Journal of Scientific and Technological Reports","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Scientific and Technological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55164/ajstr.v25i4.247049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning techniques have been widely adopted over the last few decades, especially in fisheries. This study aimed to determine the best practice of machine learning techniques with a decision tree algorithm in reducing the mortality rate of red tilapia (Oreochromis niloticus x Oreochromis mossambicus) fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system. The study phase begins with collecting water quality parameters. The parameters were measured in the form of dissolved oxygen (mg L-1), pH, temperature (°C), total ammonia nitrogen (mg L-1), nitrite-nitrogen (mg L-1), alkalinity (mg L-1), transparency (cm), and mortality rate (fish day-1).  Data Modelling was carried out using 10-fold cross-validation. The results of the performance measurement obtained an accuracy of 89.67% with ± 5.11% (micro average: 89.60%), a precision of 86.71% ± 18.02% (micro average: 80.00%), and recall of 72.50% ± 24.86% (micro average: 71.79%), with the most influential water quality parameter being nitrite-nitrogen (mg L-1). Based on the results of this study show that data classification using a decision tree algorithm can be used as a reference to determine the decisions or actions of fish farmers in reducing the mortality rate of red tilapia fingerlings raised in outdoor earthen ponds with a recirculating aquaculture system.
采用机器学习技术的循环水养殖系统降低室外土池养殖红罗非鱼(Oreochromis niloticus x Oreochromis mossambicus)鱼种死亡率的水质管理指南
在过去的几十年里,机器学习技术被广泛采用,尤其是在渔业领域。本研究旨在通过决策树算法确定机器学习技术的最佳实践,以降低在循环水养殖系统的室外土池中饲养的红罗非鱼(Oreochromis niloticus x Oreochromis mossambicus)鱼苗的死亡率。研究阶段从收集水质参数开始。以溶解氧(mg L-1)、pH、温度(°C)、总氨氮(mg L-1)、亚硝酸盐氮(mg L-1)、碱度(mg L-1)、透明度(cm)和死亡率(鱼日-1)的形式测量参数。数据建模采用10倍交叉验证。性能测量结果准确度为89.67%(±5.11%)(微平均值:89.60%),精密度为86.71%±18.02%(微平均值:80.00%),召回率为72.50%±24.86%(微平均值:71.79%),其中对水质参数影响最大的是亚硝酸盐氮(mg L-1)。基于本研究的结果表明,采用决策树算法进行数据分类,可以作为参考,确定养鱼户在采用循环水养殖系统的室外土池中降低红罗非鱼鱼种死亡率的决策或行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信