A survey on generalized measures

E. Klement, S. Weber
{"title":"A survey on generalized measures","authors":"E. Klement, S. Weber","doi":"10.1109/FUZZY.1992.258773","DOIUrl":null,"url":null,"abstract":"The authors present a unified approach to several concepts on generalized measures with various domains and ranges, which are: sigma -additive measures; probability measures of fuzzy events; fuzzy probability measures; fuzzy-valued fuzzy measures; ( sigma -) perpendicular to -decomposable measures; measures of fuzzy sets; and perpendicular to '-decomposable measures, where perpendicular to ' is the extension of an Archimedean t-conorm on (0,M) to D/sub M/ via the extension principle. All these measures are handled in a unified way. The main emphasis is on integral representations of such measures if they are defined on a collection of fuzzy sets.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors present a unified approach to several concepts on generalized measures with various domains and ranges, which are: sigma -additive measures; probability measures of fuzzy events; fuzzy probability measures; fuzzy-valued fuzzy measures; ( sigma -) perpendicular to -decomposable measures; measures of fuzzy sets; and perpendicular to '-decomposable measures, where perpendicular to ' is the extension of an Archimedean t-conorm on (0,M) to D/sub M/ via the extension principle. All these measures are handled in a unified way. The main emphasis is on integral representations of such measures if they are defined on a collection of fuzzy sets.<>
广义测度综述
给出了具有不同域和范围的广义测度的几个概念的统一方法,它们是:σ -加性测度;模糊事件的概率测度;模糊概率测度;模糊值模糊测度;(sigma -)垂直于可分解测度;模糊集测度;垂直于-可分解测度,其中垂直于-是阿基米德t形在(0,M)上通过可拓原理扩展到D/下标M/。这些措施都是统一处理的。主要的重点是这些测度的积分表示,如果它们是定义在一组模糊集上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信