Robust distributed orthogonalization based on randomized aggregation

W. Gansterer, Gerhard Niederbrucker, H. Straková, Stefan Schulze Grotthoff
{"title":"Robust distributed orthogonalization based on randomized aggregation","authors":"W. Gansterer, Gerhard Niederbrucker, H. Straková, Stefan Schulze Grotthoff","doi":"10.1145/2133173.2133177","DOIUrl":null,"url":null,"abstract":"The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to node failures compared to existing aggregation methods. On a hypercube topology it asymptotically requires the same number of iterations as the optimal all-to-all reduction operation and it scales well with the number of nodes. Orthogonalization is studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method (rdmGS), which can produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"4290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133173.2133177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The construction of distributed algorithms for matrix computations built on top of distributed data aggregation algorithms with randomized communication schedules is investigated. For this purpose, a new aggregation algorithm for summing or averaging distributed values, the push-flow algorithm, is developed, which achieves superior resilience properties with respect to node failures compared to existing aggregation methods. On a hypercube topology it asymptotically requires the same number of iterations as the optimal all-to-all reduction operation and it scales well with the number of nodes. Orthogonalization is studied as a prototypical matrix computation task. A new fault tolerant distributed orthogonalization method (rdmGS), which can produce accurate results even in the presence of node failures, is built on top of distributed data aggregation algorithms.
基于随机聚合的鲁棒分布式正交化
研究了基于随机通信调度的分布式数据聚合算法的矩阵计算分布式算法的构造。为此,本文提出了一种新的对分布值求和或平均的聚合算法——推流算法,与现有的聚合方法相比,该算法在节点故障方面具有更好的恢复性能。在超立方体拓扑上,它需要与最优全对全约简操作相同的迭代次数,并且随着节点数量的增加而扩展得很好。将正交化作为一种典型的矩阵计算任务进行研究。在分布式数据聚合算法的基础上,提出了一种新的容错分布式正交化方法(rdmGS),该方法可以在节点故障的情况下产生准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信