Detecção de DDoS Através da Análise da Quantificação da Recorrência Baseada na Extração de Características Dinâmicas e Clusterização Adaptativa

Marcelo Antonio Righi
{"title":"Detecção de DDoS Através da Análise da Quantificação da Recorrência Baseada na Extração de Características Dinâmicas e Clusterização Adaptativa","authors":"Marcelo Antonio Righi","doi":"10.5753/sbseg.2016.19321","DOIUrl":null,"url":null,"abstract":"The high number of Distributed Denial of Service (DDoS) attacks have demanded innovative solutions to guarantee reliability and availability of internet services. In this sense, different methods have been used to analyze network traffic for denial of service attacks, such as neural networks, decision trees, principal component analysis and others. However, few of them explore dynamic features to classify network traffic. This article proposes a new method, called DDoSbyAQR,that uses the recurrence quantification analysis based on the extraction of dynamic characteristics and an adaptive clustering algorithm (A-kmeans) to perform better classification of the attack network traffic. The experiments were done using the CAIDA and UCLA databases and have demonstrated ability to increase the accuracy (98.41%) of DDoS detection.","PeriodicalId":337903,"journal":{"name":"Anais do XVI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2016)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2016)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2016.19321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The high number of Distributed Denial of Service (DDoS) attacks have demanded innovative solutions to guarantee reliability and availability of internet services. In this sense, different methods have been used to analyze network traffic for denial of service attacks, such as neural networks, decision trees, principal component analysis and others. However, few of them explore dynamic features to classify network traffic. This article proposes a new method, called DDoSbyAQR,that uses the recurrence quantification analysis based on the extraction of dynamic characteristics and an adaptive clustering algorithm (A-kmeans) to perform better classification of the attack network traffic. The experiments were done using the CAIDA and UCLA databases and have demonstrated ability to increase the accuracy (98.41%) of DDoS detection.
基于动态特征提取和自适应聚类的递归量化分析DDoS检测
大量的分布式拒绝服务(DDoS)攻击要求创新的解决方案来保证互联网服务的可靠性和可用性。在这个意义上,不同的方法被用来分析网络流量的拒绝服务攻击,如神经网络,决策树,主成分分析等。然而,很少有研究利用动态特征对网络流量进行分类。本文提出了一种新的方法DDoSbyAQR,该方法利用基于动态特征提取的递归量化分析和自适应聚类算法(a -kmeans)对攻击网络流量进行更好的分类。实验使用CAIDA和UCLA数据库完成,并证明能够提高DDoS检测的准确性(98.41%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信