Three-Level PWM Rectifier Based High Efficiency Batteries Charger for EV

Yingchao Zhang, Liping Jin, Y. Jing, Zhengming Zhao, T. Lu
{"title":"Three-Level PWM Rectifier Based High Efficiency Batteries Charger for EV","authors":"Yingchao Zhang, Liping Jin, Y. Jing, Zhengming Zhao, T. Lu","doi":"10.1109/VPPC.2013.6671722","DOIUrl":null,"url":null,"abstract":"This paper describes a new type charger for electric vehicle (EV) batteries. The three-level PWM rectifier used Metal-Oxide-Semiconductor-Field-Transistor (MOSFET) with direct power control based on space vector PWM (DPC-SVM) is adopted in the front-end PWM rectifier to achieve high power factor as well as reduce system cost, and full-bridge (FB) converter with phase-shifted zero-voltage zero-current-switching (ZVZCS) is applied to the back-end DC/DC converter to improve system efficiency. Decoupling control for instantaneous active and reactive powers of the grid is realized. Experimental results in 8kW prototype show that during the whole charging process, the system efficiency is higher than 85.1% and the input power factor is higher than 99.9%.","PeriodicalId":119598,"journal":{"name":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"474 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2013.6671722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes a new type charger for electric vehicle (EV) batteries. The three-level PWM rectifier used Metal-Oxide-Semiconductor-Field-Transistor (MOSFET) with direct power control based on space vector PWM (DPC-SVM) is adopted in the front-end PWM rectifier to achieve high power factor as well as reduce system cost, and full-bridge (FB) converter with phase-shifted zero-voltage zero-current-switching (ZVZCS) is applied to the back-end DC/DC converter to improve system efficiency. Decoupling control for instantaneous active and reactive powers of the grid is realized. Experimental results in 8kW prototype show that during the whole charging process, the system efficiency is higher than 85.1% and the input power factor is higher than 99.9%.
基于三电平PWM整流器的电动汽车高效电池充电器
介绍了一种新型电动汽车电池充电器。前端PWM整流器采用基于空间矢量PWM (DPC-SVM)直接功率控制的MOSFET (Metal-Oxide-Semiconductor-Field-Transistor, MOSFET)三电平PWM整流器,实现高功率因数的同时降低系统成本,后端DC/DC变换器采用移相零电压零电流开关(ZVZCS)全桥(FB)变换器,提高系统效率。实现了电网瞬时有功与无功的解耦控制。在8kW样机上的实验结果表明,在整个充电过程中,系统效率高于85.1%,输入功率因数高于99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信