Gene-gene interaction based clustering method for microarray data

N. Díaz-Díaz, Francisco Gómez-Vela, J. Aguilar-Ruiz, Jorge García-Gutiérrez
{"title":"Gene-gene interaction based clustering method for microarray data","authors":"N. Díaz-Díaz, Francisco Gómez-Vela, J. Aguilar-Ruiz, Jorge García-Gutiérrez","doi":"10.1109/ISDA.2011.6121800","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a greedy clustering algorithm to identify groups of related genes and a new measure to improve the results of this algorithm. Clustering algorithms analyze genes in order to group those with similar behavior. Instead, our approach groups pairs of genes that present similar positive and/or negative interactions. In order to avoid noise in clusters, we apply a threshold, the neighbouring minimun index(λ), to know if a pair of genes have interaction enough or not. The algorithm allows the researcher to modify all the criteria: discretization mapping function, gene — gene mapping function and filtering function, and even the neighbouring minimun index, and provides much flexibility to obtain clusters based on the level of precision needed. We have carried out a deep experimental study in databases to obtain a good neighbouring minimun index, λ. The performance of our approach is experimentally tested on the yeast, yeast cell-cycle and malaria datasets. The final number of clusters has a very high level of customization and genes within show a significant level of cohesion, as it is shown graphically in the experiments.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a greedy clustering algorithm to identify groups of related genes and a new measure to improve the results of this algorithm. Clustering algorithms analyze genes in order to group those with similar behavior. Instead, our approach groups pairs of genes that present similar positive and/or negative interactions. In order to avoid noise in clusters, we apply a threshold, the neighbouring minimun index(λ), to know if a pair of genes have interaction enough or not. The algorithm allows the researcher to modify all the criteria: discretization mapping function, gene — gene mapping function and filtering function, and even the neighbouring minimun index, and provides much flexibility to obtain clusters based on the level of precision needed. We have carried out a deep experimental study in databases to obtain a good neighbouring minimun index, λ. The performance of our approach is experimentally tested on the yeast, yeast cell-cycle and malaria datasets. The final number of clusters has a very high level of customization and genes within show a significant level of cohesion, as it is shown graphically in the experiments.
基于基因互作的微阵列数据聚类方法
本文提出了一种贪婪聚类算法来识别相关基因群,并提出了一种改进算法结果的新措施。聚类算法分析基因,以便将具有相似行为的基因分组。相反,我们的方法是将表现出相似的积极和/或消极相互作用的基因对分组。为了避免聚类中的噪声,我们应用一个阈值,即相邻的最小指数(λ),来知道一对基因是否有足够的相互作用。该算法允许研究人员修改所有的准则:离散映射函数、基因-基因映射函数和过滤函数,甚至相邻最小索引,并提供了很大的灵活性,以获得所需的精度水平的聚类。我们在数据库中进行了深入的实验研究,以获得一个良好的相邻最小索引λ。我们的方法在酵母、酵母细胞周期和疟疾数据集上进行了实验测试。集群的最终数量具有非常高的自定义水平,并且其中的基因显示出显着的内聚水平,正如实验中图形显示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信