Enhanced Heterogeneous Cloud: Transparent Acceleration and Elasticity

Jessica Vandebon, J. Coutinho, W. Luk, E. Nurvitadhi, Mishali Naik
{"title":"Enhanced Heterogeneous Cloud: Transparent Acceleration and Elasticity","authors":"Jessica Vandebon, J. Coutinho, W. Luk, E. Nurvitadhi, Mishali Naik","doi":"10.1109/ICFPT47387.2019.00027","DOIUrl":null,"url":null,"abstract":"This paper presents ORIAN, a fully-managed Platform-as-a-Service (PaaS) for deploying high-level applications onto large-scale heterogeneous cloud infrastructures. We aim to make specialised, accelerator resources in the cloud accessible to software developers by extending the traditional homogeneous PaaS execution model to support automatic runtime management of heterogeneous compute resources such as CPUs and FPGAs. In particular, we focus on two mechanisms: transparent acceleration, which automatically maps jobs to the most suitable resource configuration, and heterogeneous elasticity, which performs automatic vertical (type) and horizontal (quantity) scaling of provisioned resources to guarantee QoS (Quality of Service) objectives while minimising cost. We develop a prototype to validate our approach, targeting a hardware platform with combined computational capacity of 28 FPGAs and 36 CPU cores, and evaluate it using case studies in three application domains: machine learning, bioinformatics, and physics. Our transparent acceleration decisions achieve on average 96% of the maximum manually identified static configuration throughput for large workloads, while removing the burden of determining configuration from the user; an elastic ORIAN resource group provides a 2.3 times cost reduction compared to an over-provisioned group for non-uniform, peaked job sequences while guaranteeing QoS objectives; and our malleable architecture extends to support a new, more suitable resource type, automatically reducing the cost by half while maintaining throughput, and achieving a 23% throughput increase while fulfilling resource constraints.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents ORIAN, a fully-managed Platform-as-a-Service (PaaS) for deploying high-level applications onto large-scale heterogeneous cloud infrastructures. We aim to make specialised, accelerator resources in the cloud accessible to software developers by extending the traditional homogeneous PaaS execution model to support automatic runtime management of heterogeneous compute resources such as CPUs and FPGAs. In particular, we focus on two mechanisms: transparent acceleration, which automatically maps jobs to the most suitable resource configuration, and heterogeneous elasticity, which performs automatic vertical (type) and horizontal (quantity) scaling of provisioned resources to guarantee QoS (Quality of Service) objectives while minimising cost. We develop a prototype to validate our approach, targeting a hardware platform with combined computational capacity of 28 FPGAs and 36 CPU cores, and evaluate it using case studies in three application domains: machine learning, bioinformatics, and physics. Our transparent acceleration decisions achieve on average 96% of the maximum manually identified static configuration throughput for large workloads, while removing the burden of determining configuration from the user; an elastic ORIAN resource group provides a 2.3 times cost reduction compared to an over-provisioned group for non-uniform, peaked job sequences while guaranteeing QoS objectives; and our malleable architecture extends to support a new, more suitable resource type, automatically reducing the cost by half while maintaining throughput, and achieving a 23% throughput increase while fulfilling resource constraints.
增强异构云:透明加速和弹性
本文介绍了一种完全托管的平台即服务(PaaS),用于将高级应用程序部署到大规模异构云基础设施上。我们的目标是通过扩展传统的同质PaaS执行模型来支持异构计算资源(如cpu和fpga)的自动运行时管理,使软件开发人员可以访问云中的专业加速器资源。我们特别关注两种机制:透明加速,它自动将作业映射到最合适的资源配置,以及异构弹性,它执行自动垂直(类型)和水平(数量)缩放所提供的资源,以保证QoS(服务质量)目标,同时最小化成本。我们开发了一个原型来验证我们的方法,目标是一个硬件平台,具有28个fpga和36个CPU核心的综合计算能力,并使用三个应用领域的案例研究来评估它:机器学习,生物信息学和物理学。对于大型工作负载,我们的透明加速决策平均实现了最大手动识别静态配置吞吐量的96%,同时消除了用户确定配置的负担;在保证QoS目标的同时,与非统一、峰值作业序列的过度配置组相比,弹性ORIAN资源组提供了2.3倍的成本降低;我们的可扩展架构扩展到支持一种新的、更合适的资源类型,在保持吞吐量的同时自动将成本降低一半,并在满足资源限制的同时实现23%的吞吐量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信