T. Lampe, L. Fiederer, Martin Voelker, Alexander Knorr, Martin A. Riedmiller, T. Ball
{"title":"A brain-computer interface for high-level remote control of an autonomous, reinforcement-learning-based robotic system for reaching and grasping","authors":"T. Lampe, L. Fiederer, Martin Voelker, Alexander Knorr, Martin A. Riedmiller, T. Ball","doi":"10.1145/2557500.2557533","DOIUrl":null,"url":null,"abstract":"We present an Internet-based brain-computer interface (BCI) for controlling an intelligent robotic device with autonomous reinforcement-learning. BCI control was achieved through dry-electrode electroencephalography (EEG) obtained during imaginary movements. Rather than using low-level direct motor control, we employed a high-level control scheme of the robot, acquired via reinforcement learning, to keep the users cognitive load low while allowing control a reaching-grasping task with multiple degrees of freedom. High-level commands were obtained by classification of EEG responses using an artificial neural network approach utilizing time-frequency features and conveyed through an intuitive user interface. The novel ombination of a rapidly operational dry electrode setup, autonomous control and Internet connectivity made it possible to conveniently interface subjects in an EEG laboratory with remote robotic devices in a closed-loop setup with online visual feedback of the robots actions to the subject. The same approach is also suitable to provide home-bound patients with the possibility to control state-of-the-art robotic devices currently confined to a research environment. Thereby, our BCI approach could help severely paralyzed patients by facilitating patient-centered research of new means of communication, mobility and independence.","PeriodicalId":287073,"journal":{"name":"Proceedings of the 19th international conference on Intelligent User Interfaces","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2557500.2557533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We present an Internet-based brain-computer interface (BCI) for controlling an intelligent robotic device with autonomous reinforcement-learning. BCI control was achieved through dry-electrode electroencephalography (EEG) obtained during imaginary movements. Rather than using low-level direct motor control, we employed a high-level control scheme of the robot, acquired via reinforcement learning, to keep the users cognitive load low while allowing control a reaching-grasping task with multiple degrees of freedom. High-level commands were obtained by classification of EEG responses using an artificial neural network approach utilizing time-frequency features and conveyed through an intuitive user interface. The novel ombination of a rapidly operational dry electrode setup, autonomous control and Internet connectivity made it possible to conveniently interface subjects in an EEG laboratory with remote robotic devices in a closed-loop setup with online visual feedback of the robots actions to the subject. The same approach is also suitable to provide home-bound patients with the possibility to control state-of-the-art robotic devices currently confined to a research environment. Thereby, our BCI approach could help severely paralyzed patients by facilitating patient-centered research of new means of communication, mobility and independence.