Graph Operations Preserving W2-Property

Q2 Mathematics
Vadim E. Levit, Eugen Mandrescu
{"title":"Graph Operations Preserving W2-Property","authors":"Vadim E. Levit,&nbsp;Eugen Mandrescu","doi":"10.1016/j.endm.2018.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>A graph is <em>well-covered</em> if all its maximal independent sets are of the same size (Plummer, 1970). A graph <em>G</em> belongs to class <strong>W</strong><sub><em>n</em></sub> if every <em>n</em> pairwise disjoint independent sets in <em>G</em> are included in <em>n</em> pairwise disjoint maximum independent sets (Staples, 1975). Clearly, <strong>W</strong><sub>1</sub> is the family of all well-covered graphs. Staples showed a number of ways to build graphs in <strong>W</strong><sub><em>n</em></sub>, using graphs from <strong>W</strong><sub><em>n</em></sub> or <strong>W</strong><sub><em>n</em>+1</sub>. In this paper, we construct some more infinite subfamilies of the class <strong>W</strong><sub><strong>2</strong></sub> by means of corona, join, and rooted product of graphs.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318300982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A graph is well-covered if all its maximal independent sets are of the same size (Plummer, 1970). A graph G belongs to class Wn if every n pairwise disjoint independent sets in G are included in n pairwise disjoint maximum independent sets (Staples, 1975). Clearly, W1 is the family of all well-covered graphs. Staples showed a number of ways to build graphs in Wn, using graphs from Wn or Wn+1. In this paper, we construct some more infinite subfamilies of the class W2 by means of corona, join, and rooted product of graphs.

保持w2属性的图运算
如果一个图的所有最大独立集的大小相同,那么这个图就是覆盖良好的(Plummer, 1970)。如果图G中的每n个对不相交独立集都包含在n个对不相交最大独立集中,则图G属于类Wn (Staples, 1975)。显然,W1是所有覆盖良好的图的族。斯台普斯展示了几种在Wn中构建图形的方法,使用Wn或Wn+1中的图形。本文利用图的电晕、连接和根积构造了W2类的几个无限子族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信