Lakshmi N. A. Venkatanarasimhan, Xiaoyang Mao, Ahmed Chowdhury, Chiradeep Sen
{"title":"Physics-Based Function Features for a Set of Material-Processing Verbs","authors":"Lakshmi N. A. Venkatanarasimhan, Xiaoyang Mao, Ahmed Chowdhury, Chiradeep Sen","doi":"10.1115/detc2019-98343","DOIUrl":null,"url":null,"abstract":"\n Features are used in computer aided geometric modeling to encapsulate primitive and lower-abstraction entities to compose higher-level complex entities in order to support faster modeling, consistent data structures between features within the model, and feature-level reasoning that extends beyond reasoning supported by the primitives. In this paper, this idea is extended to computer-aided function modeling. Four function modeling features, which mainly operate on material flows but also involved energy flows, are formally defined. These features are: (1) Convergize_EM, (2) Handover_E, (3) Change_M, and (4) Changeover_EM. Each feature is composed of formerly established functional primitives that are formally defined, and by connecting those primitives in a controlled topology enforced by a feature-level grammar. The ability of these features to support consistent function modeling and model-based reasoning is illustrated using applications, both at the device level (simpler models) and at the system level (more complex models).","PeriodicalId":352702,"journal":{"name":"Volume 1: 39th Computers and Information in Engineering Conference","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 39th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Features are used in computer aided geometric modeling to encapsulate primitive and lower-abstraction entities to compose higher-level complex entities in order to support faster modeling, consistent data structures between features within the model, and feature-level reasoning that extends beyond reasoning supported by the primitives. In this paper, this idea is extended to computer-aided function modeling. Four function modeling features, which mainly operate on material flows but also involved energy flows, are formally defined. These features are: (1) Convergize_EM, (2) Handover_E, (3) Change_M, and (4) Changeover_EM. Each feature is composed of formerly established functional primitives that are formally defined, and by connecting those primitives in a controlled topology enforced by a feature-level grammar. The ability of these features to support consistent function modeling and model-based reasoning is illustrated using applications, both at the device level (simpler models) and at the system level (more complex models).