Wireless channel prediction using ensemble of Extreme Learning Machines

M. Stojanovic, N. Sekulovic, A. Panajotovic, Predrag M. Popovic, M. Protić
{"title":"Wireless channel prediction using ensemble of Extreme Learning Machines","authors":"M. Stojanovic, N. Sekulovic, A. Panajotovic, Predrag M. Popovic, M. Protić","doi":"10.1109/ICEST52640.2021.9483464","DOIUrl":null,"url":null,"abstract":"In this article, we examine the possibilities and provide justification for extreme learning machines (ELMs) ensemble application in prediction of wireless channel condition. Single-input single-output (SISO) system in environments classified as microcellular and picocellular is used for analysis of the prediction model. Effectiveness and accuracy of ensemble based ELM algorithm to predict signal-to-noise ratio (SNR) in the channel is confirmed using, as performance indicators, the normalized mean squared error (NMSE) and time consumption. Moreover, the ensemble can effectively improve the generalization of the model compared to the single ELM. The results also show that ELM scan generates diverse prediction results, even when using the same training set.","PeriodicalId":308948,"journal":{"name":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEST52640.2021.9483464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we examine the possibilities and provide justification for extreme learning machines (ELMs) ensemble application in prediction of wireless channel condition. Single-input single-output (SISO) system in environments classified as microcellular and picocellular is used for analysis of the prediction model. Effectiveness and accuracy of ensemble based ELM algorithm to predict signal-to-noise ratio (SNR) in the channel is confirmed using, as performance indicators, the normalized mean squared error (NMSE) and time consumption. Moreover, the ensemble can effectively improve the generalization of the model compared to the single ELM. The results also show that ELM scan generates diverse prediction results, even when using the same training set.
使用极限学习机集成的无线信道预测
在本文中,我们研究了极端学习机(elm)集成应用于无线信道状况预测的可能性并提供了理由。采用微蜂窝和微蜂窝环境下的单输入单输出(SISO)系统对预测模型进行分析。以归一化均方误差(NMSE)和时间消耗作为性能指标,验证了基于集成的ELM算法预测信道信噪比(SNR)的有效性和准确性。此外,与单一ELM相比,集成可以有效地提高模型的泛化能力。结果还表明,即使使用相同的训练集,ELM扫描也会产生不同的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信