Pamela Fleischmann, Jonas Höfer, Annika Huch, Dirk Nowotka
{"title":"α-β-Factorization and the Binary Case of Simon's Congruence","authors":"Pamela Fleischmann, Jonas Höfer, Annika Huch, Dirk Nowotka","doi":"10.48550/arXiv.2306.14192","DOIUrl":null,"url":null,"abstract":"In 1991 H\\'ebrard introduced a factorization of words that turned out to be a powerful tool for the investigation of a word's scattered factors (also known as (scattered) subwords or subsequences). Based on this, first Karandikar and Schnoebelen introduced the notion of $k$-richness and later on Barker et al. the notion of $k$-universality. In 2022 Fleischmann et al. presented a generalization of the arch factorization by intersecting the arch factorization of a word and its reverse. While the authors merely used this factorization for the investigation of shortest absent scattered factors, in this work we investigate this new $\\alpha$-$\\beta$-factorization as such. We characterize the famous Simon congruence of $k$-universal words in terms of $1$-universal words. Moreover, we apply these results to binary words. In this special case, we obtain a full characterization of the classes and calculate the index of the congruence. Lastly, we start investigating the ternary case, present a full list of possibilities for $\\alpha\\beta\\alpha$-factors, and characterize their congruence.","PeriodicalId":335412,"journal":{"name":"International Symposium on Fundamentals of Computation Theory","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Fundamentals of Computation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.14192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In 1991 H\'ebrard introduced a factorization of words that turned out to be a powerful tool for the investigation of a word's scattered factors (also known as (scattered) subwords or subsequences). Based on this, first Karandikar and Schnoebelen introduced the notion of $k$-richness and later on Barker et al. the notion of $k$-universality. In 2022 Fleischmann et al. presented a generalization of the arch factorization by intersecting the arch factorization of a word and its reverse. While the authors merely used this factorization for the investigation of shortest absent scattered factors, in this work we investigate this new $\alpha$-$\beta$-factorization as such. We characterize the famous Simon congruence of $k$-universal words in terms of $1$-universal words. Moreover, we apply these results to binary words. In this special case, we obtain a full characterization of the classes and calculate the index of the congruence. Lastly, we start investigating the ternary case, present a full list of possibilities for $\alpha\beta\alpha$-factors, and characterize their congruence.