{"title":"Correct-By-Construction Exploration and Exploitation for Unknown Linear Systems Using Bilinear Optimization","authors":"Kwesi J. Rutledge, N. Ozay","doi":"10.1145/3501710.3519536","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of controlling an unknown dynamical system to safely reach a target set. We assume we have a priori access to a finite set of uncertain linear systems, to which the unknown system belongs to. This set can contain models for different failure or operational modes or potential environmental conditions. Given a desired exploration-exploitation profile, we provide a bilinear optimization based solution to this control synthesis problem. Our approach provides a family of controllers that enable adaptation based on data observed at run-time to automatically trade off model detection and reachability objectives while maintaining safety. We demonstrate the approach with several examples.","PeriodicalId":194680,"journal":{"name":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501710.3519536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper addresses the problem of controlling an unknown dynamical system to safely reach a target set. We assume we have a priori access to a finite set of uncertain linear systems, to which the unknown system belongs to. This set can contain models for different failure or operational modes or potential environmental conditions. Given a desired exploration-exploitation profile, we provide a bilinear optimization based solution to this control synthesis problem. Our approach provides a family of controllers that enable adaptation based on data observed at run-time to automatically trade off model detection and reachability objectives while maintaining safety. We demonstrate the approach with several examples.