On the existence and construction of good codes with low peak-to-average power ratios

K. Paterson, V. Tarokh
{"title":"On the existence and construction of good codes with low peak-to-average power ratios","authors":"K. Paterson, V. Tarokh","doi":"10.1109/ISIT.2000.866515","DOIUrl":null,"url":null,"abstract":"The peak-to-average power ratio PAPR(/spl Cscr/) of a code /spl Cscr/ is an important characteristic of that code when it is used in OFDM communications. We establish bounds on the region of achievable triples (R, d, PAPR(/spl Cscr/)) where R is the code rate and d is the minimum Euclidean distance of the code. We prove a lower bound on PAPR in terms of R and d and show that there exist asymptotically good codes whose PAPR is at most 8logn. We give explicit constructions of error-correcting codes with low PAPR by employing bounds for hybrid exponential sums over Galois fields and rings.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"298","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 298

Abstract

The peak-to-average power ratio PAPR(/spl Cscr/) of a code /spl Cscr/ is an important characteristic of that code when it is used in OFDM communications. We establish bounds on the region of achievable triples (R, d, PAPR(/spl Cscr/)) where R is the code rate and d is the minimum Euclidean distance of the code. We prove a lower bound on PAPR in terms of R and d and show that there exist asymptotically good codes whose PAPR is at most 8logn. We give explicit constructions of error-correcting codes with low PAPR by employing bounds for hybrid exponential sums over Galois fields and rings.
低峰均功率比良好规范的存在与构造
码的峰均功率比PAPR(/spl Cscr/)是该码在OFDM通信中使用时的一个重要特性。我们在可实现三元组(R, d, PAPR(/spl Cscr/))的区域上建立了边界,其中R是码率,d是码的最小欧氏距离。我们证明了关于R和d的PAPR的下界,并证明了存在PAPR不超过8logn的渐近好的码。利用伽罗瓦场和环上混合指数和的界,给出了具有低PAPR的纠错码的显式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信