{"title":"A New Maximum Power Point Tracking Algorithm For Partial Shaded Photovoltaic Systems","authors":"Tawfik Radjai, J. Gaubert, L. Rahmani","doi":"10.1109/ICOSC.2018.8587773","DOIUrl":null,"url":null,"abstract":"In this paper, a new maximum power point tracking MPPT algorithm is proposed to track the global maximum point (GMPP) under partial shading conditions (PSC). The proposed algorithm can track the real GMPP under any PSC patterns and under any weather conditions with improving the tracking speed and reducing the PV output power oscillations at the steady state. The proposed algorithm is simple and easy to implement, because additional sensors or electrical switches are not required to identify the GMPP. The idea of the proposed method is based mainly on the scanning of the PV curve with a variable step of the duty cycle from zero to one. The scan step will be small when the operating point is near the MPP, otherwise, the scan step will be large to skip the regions that do not need to be scanned on the PV curve. Therefore, the scan time will be reduced and the MPPs are accurately detected. Furthermore, the algorithm stores only one MPP during the scanning process, stores only the data position of the greatest maximum power of the PV curve in each sample time Ts. Therefore, the execution of the embedded program in the calculator is optimized. In order to maintain the operating point at the GMPP after the scanning is finished a simple proposed sub-program will be used. In this work, a controlled Cuk DC–DC converter was used and connected to a Kyocera KC50T PV panel to verify the performance of the proposed method. Matlab/Simulink™ was used for the simulation studies.","PeriodicalId":153985,"journal":{"name":"2018 7th International Conference on Systems and Control (ICSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2018.8587773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a new maximum power point tracking MPPT algorithm is proposed to track the global maximum point (GMPP) under partial shading conditions (PSC). The proposed algorithm can track the real GMPP under any PSC patterns and under any weather conditions with improving the tracking speed and reducing the PV output power oscillations at the steady state. The proposed algorithm is simple and easy to implement, because additional sensors or electrical switches are not required to identify the GMPP. The idea of the proposed method is based mainly on the scanning of the PV curve with a variable step of the duty cycle from zero to one. The scan step will be small when the operating point is near the MPP, otherwise, the scan step will be large to skip the regions that do not need to be scanned on the PV curve. Therefore, the scan time will be reduced and the MPPs are accurately detected. Furthermore, the algorithm stores only one MPP during the scanning process, stores only the data position of the greatest maximum power of the PV curve in each sample time Ts. Therefore, the execution of the embedded program in the calculator is optimized. In order to maintain the operating point at the GMPP after the scanning is finished a simple proposed sub-program will be used. In this work, a controlled Cuk DC–DC converter was used and connected to a Kyocera KC50T PV panel to verify the performance of the proposed method. Matlab/Simulink™ was used for the simulation studies.