Power System Malware Detection Based on Deep Belief Network Classifier

Xuan Chen
{"title":"Power System Malware Detection Based on Deep Belief Network Classifier","authors":"Xuan Chen","doi":"10.1109/icgea54406.2022.9792083","DOIUrl":null,"url":null,"abstract":"In order to achieve accurate detection of unknown malware in power system, this paper proposes a malware detection system based on Deep Belief Network (DBN). The system deconstructs the malware into an opcode sequence, extracts the feature vector with the detection value, and uses the DBN classifier to classify the malicious code. Through the experiments of classification performance, feature extraction and unlabeled data training, it is proved that DBN-based classifiers can use unlabeled data for training and have better accuracy than other classification algorithms. The DBN-based automatic encoder can effectively reduce the dimension of the feature vector significantly.","PeriodicalId":151236,"journal":{"name":"2022 6th International Conference on Green Energy and Applications (ICGEA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Green Energy and Applications (ICGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icgea54406.2022.9792083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve accurate detection of unknown malware in power system, this paper proposes a malware detection system based on Deep Belief Network (DBN). The system deconstructs the malware into an opcode sequence, extracts the feature vector with the detection value, and uses the DBN classifier to classify the malicious code. Through the experiments of classification performance, feature extraction and unlabeled data training, it is proved that DBN-based classifiers can use unlabeled data for training and have better accuracy than other classification algorithms. The DBN-based automatic encoder can effectively reduce the dimension of the feature vector significantly.
基于深度信念网络分类器的电力系统恶意软件检测
为了实现对电力系统中未知恶意软件的准确检测,提出了一种基于深度信念网络(DBN)的恶意软件检测系统。系统将恶意软件解构成一个操作码序列,提取具有检测值的特征向量,使用DBN分类器对恶意代码进行分类。通过分类性能、特征提取和未标记数据训练实验,证明基于dbn的分类器可以使用未标记数据进行训练,并且比其他分类算法具有更好的准确率。基于dbn的自动编码器可以有效地显著降低特征向量的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信