Simulation of Sensor Spoofing Attacks on Unmanned Aerial Vehicles using the Gazebo Simulator

Irdin Pekaric, David Arnold, M. Felderer
{"title":"Simulation of Sensor Spoofing Attacks on Unmanned Aerial Vehicles using the Gazebo Simulator","authors":"Irdin Pekaric, David Arnold, M. Felderer","doi":"10.1109/QRS-C57518.2022.00016","DOIUrl":null,"url":null,"abstract":"Conducting safety simulations in various simulators, such as the Gazebo simulator, became a very popular means of testing vehicles against potential safety risks (i.e. crashes). However, this was not the case with security testing. Performing security testing in a simulator is very difficult because security attacks are performed on a different abstraction level. In addition, the attacks themselves are becoming more sophisticated, which directly contributes to the difficulty of executing them in a simulator. In this paper, we attempt to tackle the aforementioned gap by investigating possible attacks that can be simulated, and then performing their simulations. The presented approach shows that attacks targeting the LiDAR and GPS components of unmanned aerial vehicles can be simulated. This is achieved by exploiting vulnerabilities of the ROS and MAVLink protocol and injecting malicious processes into an application. As a result, messages with arbitrary values can be spoofed to the corresponding topics, which allows attackers to update relevant parameters and cause a potential crash of a vehicle. This was tested in multiple scenarios, thereby proving that it is indeed possible to simulate certain attack types, such as spoofing and jamming.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting safety simulations in various simulators, such as the Gazebo simulator, became a very popular means of testing vehicles against potential safety risks (i.e. crashes). However, this was not the case with security testing. Performing security testing in a simulator is very difficult because security attacks are performed on a different abstraction level. In addition, the attacks themselves are becoming more sophisticated, which directly contributes to the difficulty of executing them in a simulator. In this paper, we attempt to tackle the aforementioned gap by investigating possible attacks that can be simulated, and then performing their simulations. The presented approach shows that attacks targeting the LiDAR and GPS components of unmanned aerial vehicles can be simulated. This is achieved by exploiting vulnerabilities of the ROS and MAVLink protocol and injecting malicious processes into an application. As a result, messages with arbitrary values can be spoofed to the corresponding topics, which allows attackers to update relevant parameters and cause a potential crash of a vehicle. This was tested in multiple scenarios, thereby proving that it is indeed possible to simulate certain attack types, such as spoofing and jamming.
基于Gazebo模拟器的无人机传感器欺骗攻击仿真
在各种模拟器中进行安全模拟,例如Gazebo模拟器,成为测试车辆潜在安全风险(即碰撞)的一种非常流行的方法。然而,安全测试并非如此。在模拟器中执行安全测试非常困难,因为安全攻击是在不同的抽象级别上执行的。此外,攻击本身也变得越来越复杂,这直接增加了在模拟器中执行攻击的难度。在本文中,我们试图通过调查可以模拟的可能的攻击,然后执行它们的模拟来解决上述差距。该方法表明,针对无人机激光雷达和GPS组件的攻击是可以模拟的。这是通过利用ROS和MAVLink协议的漏洞并将恶意进程注入应用程序来实现的。因此,具有任意值的消息可以被欺骗为相应的主题,这允许攻击者更新相关参数并导致车辆的潜在崩溃。这在多个场景中进行了测试,从而证明确实可以模拟某些攻击类型,例如欺骗和干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信