Action Recognition by Local Space-Time Features and Least Square Twin SVM (LS-TSVM)

K. Mozafari, J. Nasiri, Nasrollah Moghadam Charkari, S. Jalili
{"title":"Action Recognition by Local Space-Time Features and Least Square Twin SVM (LS-TSVM)","authors":"K. Mozafari, J. Nasiri, Nasrollah Moghadam Charkari, S. Jalili","doi":"10.1109/ICI.2011.55","DOIUrl":null,"url":null,"abstract":"In this research a new approach ffor human action recognition is proposed. At first, local spaace-time features extracted which recently becomes a popular video representation. Feature extraction is done wwith use of Harris detector algorithm and Histogram of Optiical Flow (HOF) descriptor. Then we apply a new extendedd SVM classifier called least square Twin SVM (LS-TSVM)). LS-TSVM is a binary classifier that does classification by use of two non¬parallel hyperplanes and it is four times faster than the classical SVM while the precision is better. WWe investigate the performance of LS-TSVM method on a totall of 25 persons on KTH dataset. Our experiments on the standdard KTH action dataset shown that our method improvees state-of-the-art results by achieving 95.8%, 96.3% and 97.2%% accuracy in case of 1-fold , 5-fold and 10-fold cross validation.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this research a new approach ffor human action recognition is proposed. At first, local spaace-time features extracted which recently becomes a popular video representation. Feature extraction is done wwith use of Harris detector algorithm and Histogram of Optiical Flow (HOF) descriptor. Then we apply a new extendedd SVM classifier called least square Twin SVM (LS-TSVM)). LS-TSVM is a binary classifier that does classification by use of two non¬parallel hyperplanes and it is four times faster than the classical SVM while the precision is better. WWe investigate the performance of LS-TSVM method on a totall of 25 persons on KTH dataset. Our experiments on the standdard KTH action dataset shown that our method improvees state-of-the-art results by achieving 95.8%, 96.3% and 97.2%% accuracy in case of 1-fold , 5-fold and 10-fold cross validation.
局部时空特征与最小二乘双支持向量机(LS-TSVM)动作识别
本研究提出了一种新的人体动作识别方法。首先提取局部时空特征,这是最近流行的视频表示方法。利用Harris检测器算法和光流直方图描述符进行特征提取。然后应用了一种新的扩展SVM分类器,称为最小二乘双支持向量机(LS-TSVM))。LS-TSVM是一种利用两个非平行超平面进行分类的二元分类器,其速度是经典SVM的4倍,同时精度更高。我们在KTH数据集上研究了LS-TSVM方法在25个人上的性能。我们在标准KTH动作数据集上的实验表明,我们的方法提高了最先进的结果,在1倍、5倍和10倍交叉验证的情况下,我们的方法达到了95.8%、96.3%和97.2%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信