A Hybrid Vector Artificial Physics Optimization with Multi-dimensional Search Method

Gangjun Yang, Liping Xie, Ying Tan, J. Zeng
{"title":"A Hybrid Vector Artificial Physics Optimization with Multi-dimensional Search Method","authors":"Gangjun Yang, Liping Xie, Ying Tan, J. Zeng","doi":"10.1109/CASoN.2010.12","DOIUrl":null,"url":null,"abstract":"Artificial physics optimization algorithm (APO) is a new swarm intelligence algorithm to solve global optimization problem based on Physicomimetics framework. An n order diagonal matrix of shrinkage coefficient is introduced to ensure that each individual is within the decision space. Multi-dimensional search method is merged into the vector model of APO to improve the local exploitation capability of vector APO. The simulation results confirm that the performance of the hybrid vector APO with multi-dimensional search method is effective.","PeriodicalId":158080,"journal":{"name":"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Artificial physics optimization algorithm (APO) is a new swarm intelligence algorithm to solve global optimization problem based on Physicomimetics framework. An n order diagonal matrix of shrinkage coefficient is introduced to ensure that each individual is within the decision space. Multi-dimensional search method is merged into the vector model of APO to improve the local exploitation capability of vector APO. The simulation results confirm that the performance of the hybrid vector APO with multi-dimensional search method is effective.
基于多维搜索的混合矢量人工物理优化方法
人工物理优化算法(APO)是一种基于物理仿生学框架的求解全局优化问题的新型群智能算法。引入n阶收缩系数对角矩阵,保证每个个体都在决策空间内。将多维搜索方法融入矢量APO模型中,提高矢量APO的局部开发能力。仿真结果验证了采用多维搜索方法的混合矢量APO算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信