Less naive Bayes spai detection

Hongming Yang, Maurice Stassen, Tjalling Tjalkens
{"title":"Less naive Bayes spai detection","authors":"Hongming Yang, Maurice Stassen, Tjalling Tjalkens","doi":"10.1109/ITA.2007.4357608","DOIUrl":null,"url":null,"abstract":"We consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A naive Bayes filter assumes conditional independence of the feature vector components. We use the context tree weighting method as an application of the minimum description length principle to allow for dependencies between the feature vector components. It turns out that, due to the limited amount of training data, we must assume conditional independence between groups of vector components. We consider several ad-hoc algorithms to find good groupings and good conditional models.","PeriodicalId":439952,"journal":{"name":"2007 Information Theory and Applications Workshop","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2007.4357608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a binary classification problem with a feature vector of high dimensionality. Spam mail filters are a popular example hereof. A naive Bayes filter assumes conditional independence of the feature vector components. We use the context tree weighting method as an application of the minimum description length principle to allow for dependencies between the feature vector components. It turns out that, due to the limited amount of training data, we must assume conditional independence between groups of vector components. We consider several ad-hoc algorithms to find good groupings and good conditional models.
更少的朴素贝叶斯检测
我们考虑一个具有高维特征向量的二值分类问题。垃圾邮件过滤器就是一个很流行的例子。朴素贝叶斯滤波器假设特征向量组件具有条件独立性。我们使用上下文树加权方法作为最小描述长度原则的应用,以允许特征向量组件之间的依赖关系。事实证明,由于训练数据的数量有限,我们必须假设向量分量组之间的条件独立。我们考虑了几种特别算法来寻找好的分组和好的条件模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信