Vitality based feature selection for intrusion detection

Jupriyadi, A. I. Kistijantoro
{"title":"Vitality based feature selection for intrusion detection","authors":"Jupriyadi, A. I. Kistijantoro","doi":"10.1109/ICAICTA.2014.7005921","DOIUrl":null,"url":null,"abstract":"Intrusion detection system is the process to monitor network traffic to detect possible attacks. In recent time, network traffic increasing rapidly. There are plenty of research today focused on feature selection or reduction, as some of the features are irrelevant and degrade the performance of an intrusion detection system. By eliminating some of features, we can improve the performance of classification algorithm. In this paper, we evaluate the performance of feature selection methods, such as Correlation Based Feature Selection (CFS), Information Gain (IG), Gain Ratio (GR), Feature Vitality Based Reduction Method (FVBRM). We propose a modification to FVBRM by changing the parameter True Positives Rate (TPR) into False Positives Rate (FPR) and by applying Naïve Bayes classifier on reduced dataset to measure the result of our feature selection method. The results of modified FVBRM indicate that selected attributes provide better performance for intrusion detection system.","PeriodicalId":173600,"journal":{"name":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2014.7005921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intrusion detection system is the process to monitor network traffic to detect possible attacks. In recent time, network traffic increasing rapidly. There are plenty of research today focused on feature selection or reduction, as some of the features are irrelevant and degrade the performance of an intrusion detection system. By eliminating some of features, we can improve the performance of classification algorithm. In this paper, we evaluate the performance of feature selection methods, such as Correlation Based Feature Selection (CFS), Information Gain (IG), Gain Ratio (GR), Feature Vitality Based Reduction Method (FVBRM). We propose a modification to FVBRM by changing the parameter True Positives Rate (TPR) into False Positives Rate (FPR) and by applying Naïve Bayes classifier on reduced dataset to measure the result of our feature selection method. The results of modified FVBRM indicate that selected attributes provide better performance for intrusion detection system.
基于活力的入侵检测特征选择
入侵检测系统是对网络流量进行监控,检测可能发生的攻击的过程。近年来,网络流量增长迅速。目前有大量的研究集中在特征选择或缩减上,因为一些特征是不相关的,会降低入侵检测系统的性能。通过消除一些特征,可以提高分类算法的性能。本文对基于相关性的特征选择(CFS)、信息增益(IG)、增益比(GR)、基于特征活力的约简方法(FVBRM)等特征选择方法的性能进行了评价。我们提出了一种改进FVBRM的方法,将参数True positive Rate (TPR)改为False Positives Rate (FPR),并在简化的数据集上应用Naïve贝叶斯分类器来度量我们的特征选择方法的结果。改进的FVBRM结果表明,所选择的属性为入侵检测系统提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信