OmniDRL: A 29.3 TFLOPS/W Deep Reinforcement Learning Processor with Dualmode Weight Compression and On-chip Sparse Weight Transposer

Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, Donghyeon Han, Jinsu Lee, H. Yoo
{"title":"OmniDRL: A 29.3 TFLOPS/W Deep Reinforcement Learning Processor with Dualmode Weight Compression and On-chip Sparse Weight Transposer","authors":"Juhyoung Lee, Sangyeob Kim, Sangjin Kim, Wooyoung Jo, Donghyeon Han, Jinsu Lee, H. Yoo","doi":"10.23919/VLSICircuits52068.2021.9492504","DOIUrl":null,"url":null,"abstract":"This paper presents OmniDRL, a 4.18 TFLOPS and 29.3 TFLOPS/W DRL processor. A group-sparse training core and exponent mean delta encoding are proposed to enable weight and feature map compression for every iteration of DRL training. A sparse weight transposer enables on-chip transpose of compressed weight for reducing external memory access. The processor fabricated in 28 nm CMOS technology and occupies 3.6×3.6 mm2 die area. It achieved 7.16 TFLOPS/W energy efficiency for training robot agent (Mujoco Halfcheetah, TD3), which is 2.4× higher than the previous state-of-the-art.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents OmniDRL, a 4.18 TFLOPS and 29.3 TFLOPS/W DRL processor. A group-sparse training core and exponent mean delta encoding are proposed to enable weight and feature map compression for every iteration of DRL training. A sparse weight transposer enables on-chip transpose of compressed weight for reducing external memory access. The processor fabricated in 28 nm CMOS technology and occupies 3.6×3.6 mm2 die area. It achieved 7.16 TFLOPS/W energy efficiency for training robot agent (Mujoco Halfcheetah, TD3), which is 2.4× higher than the previous state-of-the-art.
OmniDRL:一种具有双模权值压缩和片上稀疏权值转换的29.3 TFLOPS/W深度强化学习处理器
本文介绍了OmniDRL,一个4.18 TFLOPS和29.3 TFLOPS/W的DRL处理器。提出了组稀疏训练核和指数均值增量编码,实现了每次迭代DRL训练的权值和特征映射压缩。稀疏权值转置器可实现压缩权值的片上转置,以减少外部存储器访问。该处理器采用28纳米CMOS技术制造,芯片面积为3.6×3.6 mm2。训练机器人代理(Mujoco Halfcheetah, TD3)的能量效率达到7.16 TFLOPS/W,比之前的最先进技术高出2.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信