ANALISIS SENTIMEN TWITTER UNTUK MENGETAHUI KESAN MASYARAKAT TENTANG PELAKSANAAN POMPROV JAWA TIMUR TAHUN 2022 DENGAN PERBANDINGAN METODE NAÏVE BAYES CLASSIFIER DAN DECISION TREE BERBASIS SMOTE

Mas'ud Hermansyah
{"title":"ANALISIS SENTIMEN TWITTER UNTUK MENGETAHUI KESAN MASYARAKAT TENTANG PELAKSANAAN POMPROV JAWA TIMUR TAHUN 2022 DENGAN PERBANDINGAN METODE NAÏVE BAYES CLASSIFIER DAN DECISION TREE BERBASIS SMOTE","authors":"Mas'ud Hermansyah","doi":"10.55606/jitek.v2i3.551","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is a method used to understand, extract, and automatically process text data to get the sentiment contained in an opinion. Sentiment analysis will be used to process comments made by the community or supporters of each participant of POMPROV East Java 2022 through various media, including Twitter, regarding the progress or results of POMPROV East Java 2022. The number of comments, the authors use data mining methods and algorithms to process the comment data to get information about the POMPROV East Java 2022 event. The Naïve Bayes Classifier and Decision Tree classification algorithms are used as tools to classify comments expressed by users. Based on the results of experiments that have been carried out four times according to the number of data splits and twice based on the algorithm used, it can be concluded that the use of the SMOTE algorithm can increase the accuracy of the various data split compositions used. The best results of the Naïve Bayes Classifier method are found in the 7:3 data distribution which increases the accuracy by 14.52% and the Decision Tree method in the 9:1 data division increases the accuracy by 9.45%.","PeriodicalId":356696,"journal":{"name":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Dan Tekonologi Komputer (JITEK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55606/jitek.v2i3.551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sentiment analysis is a method used to understand, extract, and automatically process text data to get the sentiment contained in an opinion. Sentiment analysis will be used to process comments made by the community or supporters of each participant of POMPROV East Java 2022 through various media, including Twitter, regarding the progress or results of POMPROV East Java 2022. The number of comments, the authors use data mining methods and algorithms to process the comment data to get information about the POMPROV East Java 2022 event. The Naïve Bayes Classifier and Decision Tree classification algorithms are used as tools to classify comments expressed by users. Based on the results of experiments that have been carried out four times according to the number of data splits and twice based on the algorithm used, it can be concluded that the use of the SMOTE algorithm can increase the accuracy of the various data split compositions used. The best results of the Naïve Bayes Classifier method are found in the 7:3 data distribution which increases the accuracy by 14.52% and the Decision Tree method in the 9:1 data division increases the accuracy by 9.45%.
情感分析是一种用于理解、提取和自动处理文本数据以获得观点中包含的情感的方法。情感分析将用于处理社区或每个参与者的支持者通过各种媒体(包括Twitter)就POMPROV East Java 2022的进展或结果发表的评论。对于评论的数量,作者使用数据挖掘方法和算法来处理评论数据,以获得有关POMPROV East Java 2022事件的信息。使用Naïve贝叶斯分类器和决策树分类算法作为工具对用户表达的评论进行分类。根据数据分割次数进行了4次实验,根据所使用的算法进行了2次实验,结果表明,使用SMOTE算法可以提高所使用的各种数据分割组合的精度。Naïve贝叶斯分类器方法在7:3数据分布下的准确率提高了14.52%,决策树方法在9:1数据划分下的准确率提高了9.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信