{"title":"Investigating Graph-based Features for Speech Emotion Recognition","authors":"A. Pentari, George P. Kafentzis, M. Tsiknakis","doi":"10.1109/BHI56158.2022.9926795","DOIUrl":null,"url":null,"abstract":"During the last decades, automatic speech emotion recognition (SER) has gained an increased interest by the research community. Specifically, SER aims to recognize the emotional state of a speaker directly from a speech recording. The most prominent approaches in the literature include feature extraction of speech signals in time and/or frequency domain that are successively applied as input into a classification scheme. In this paper, we propose to exploit graph theory and structures as alternative forms of speech representations. We suggest applying the so-called Visibility Graph (VG) theory to represent speech data using an adjacency matrix and extract well-known graph-based features from the latter. Finally, these features are fed into a Support Vector Machine (SVM) classifier in a leave-one-speaker-out, multi-class fashion. Our proposed feature set is compared with a well-known acoustic feature set named the Geneva Minimalistic Acoustic Parameter Set (GeMAPS). We test both approaches on two publicly available speech datasets: SAVEE and EMOVO. The experimental results show that the proposed graph-based features provide better results, namely a classification accuracy of 70% and 98%, respectively, yielding an increase by 29.2% and 60.6%, respectively, when compared to GeMAPS.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
During the last decades, automatic speech emotion recognition (SER) has gained an increased interest by the research community. Specifically, SER aims to recognize the emotional state of a speaker directly from a speech recording. The most prominent approaches in the literature include feature extraction of speech signals in time and/or frequency domain that are successively applied as input into a classification scheme. In this paper, we propose to exploit graph theory and structures as alternative forms of speech representations. We suggest applying the so-called Visibility Graph (VG) theory to represent speech data using an adjacency matrix and extract well-known graph-based features from the latter. Finally, these features are fed into a Support Vector Machine (SVM) classifier in a leave-one-speaker-out, multi-class fashion. Our proposed feature set is compared with a well-known acoustic feature set named the Geneva Minimalistic Acoustic Parameter Set (GeMAPS). We test both approaches on two publicly available speech datasets: SAVEE and EMOVO. The experimental results show that the proposed graph-based features provide better results, namely a classification accuracy of 70% and 98%, respectively, yielding an increase by 29.2% and 60.6%, respectively, when compared to GeMAPS.