Structural and parametric uncertainties in full Bayesian and graphical lasso based approaches: Beyond edge weights in psychological networks

G. Hullám, G. Juhász, J. Deakin, P. Antal
{"title":"Structural and parametric uncertainties in full Bayesian and graphical lasso based approaches: Beyond edge weights in psychological networks","authors":"G. Hullám, G. Juhász, J. Deakin, P. Antal","doi":"10.1109/CIBCB.2017.8058566","DOIUrl":null,"url":null,"abstract":"Uncertainty over model structures poses a challenge for many approaches exploring effect strength parameters at system-level. Monte Carlo methods for full Bayesian model averaging over model structures require considerable computational resources, whereas bootstrapped graphical lasso and its approximations offer scalable alternatives with lower complexity. Although the computational efficiency of graphical lasso based approaches has prompted growing number of applications, the restrictive assumptions of this approach are frequently ignored. We demonstrate using an artificial and a real-world example that full Bayesian averaging using Bayesian networks provides detailed estimates through posterior distributions for structural and parametric uncertainties and it is a feasible alternative, which is routinely applicable in mid-sized biomedical problems with hundreds of variables. We compare Bayesian estimates with corresponding frequentist quantities from bootstrapped graphical lasso using pairwise Markov Random Fields, discussing also their different interpretations. We present results using synthetic data from an artificial model and using the UK Biobank data set to construct a psychopathological network centered around depression (this research has been conducted using the UK Biobank Resource under Application Number 1602).","PeriodicalId":283115,"journal":{"name":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2017.8058566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncertainty over model structures poses a challenge for many approaches exploring effect strength parameters at system-level. Monte Carlo methods for full Bayesian model averaging over model structures require considerable computational resources, whereas bootstrapped graphical lasso and its approximations offer scalable alternatives with lower complexity. Although the computational efficiency of graphical lasso based approaches has prompted growing number of applications, the restrictive assumptions of this approach are frequently ignored. We demonstrate using an artificial and a real-world example that full Bayesian averaging using Bayesian networks provides detailed estimates through posterior distributions for structural and parametric uncertainties and it is a feasible alternative, which is routinely applicable in mid-sized biomedical problems with hundreds of variables. We compare Bayesian estimates with corresponding frequentist quantities from bootstrapped graphical lasso using pairwise Markov Random Fields, discussing also their different interpretations. We present results using synthetic data from an artificial model and using the UK Biobank data set to construct a psychopathological network centered around depression (this research has been conducted using the UK Biobank Resource under Application Number 1602).
基于全贝叶斯和图形套索方法的结构和参数不确定性:心理网络中超越边缘权重
模型结构的不确定性对许多探索系统级效应强度参数的方法提出了挑战。在模型结构上进行全贝叶斯模型平均的蒙特卡罗方法需要大量的计算资源,而自举图形套索及其近似提供了具有较低复杂性的可扩展替代方案。尽管基于图形套索的方法的计算效率已经促使越来越多的应用,但这种方法的限制性假设经常被忽略。我们使用人工和现实世界的例子证明,使用贝叶斯网络的全贝叶斯平均通过结构和参数不确定性的后验分布提供了详细的估计,这是一种可行的替代方案,通常适用于具有数百个变量的中型生物医学问题。我们使用成对马尔可夫随机场比较了自举图形套索的贝叶斯估计和相应的频率量,并讨论了它们的不同解释。我们使用人工模型的合成数据和UK Biobank数据集来构建一个以抑郁症为中心的精神病理学网络(这项研究是使用UK Biobank资源进行的,申请号为1602)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信