Optimization of Nodule and Height Sizes for Mixed Hydrophilic and Hydrophobic Surfaces

Brian Frymyer, A. Oztekin
{"title":"Optimization of Nodule and Height Sizes for Mixed Hydrophilic and Hydrophobic Surfaces","authors":"Brian Frymyer, A. Oztekin","doi":"10.1115/IMECE2020-23470","DOIUrl":null,"url":null,"abstract":"\n Patterned surfaces of hydrophobic and hydrophilic materials are considered to sustain dropwise condensation, providing the benefits of both materials and creating a surface with a low energy barrier for nucleation and capable of sustaining dropwise condensation. Surface heights, nodule sizes, and flow rates are evaluated on square-patterned surfaces to maximize mass collection. A thermal model is used to assess surface performance and includes an equivalent thermal resistance for diffusion. Flow rates of 15, 25, 50, and 100 m/s with nodule sizes between 0.1 mm to 3.6 mm are evaluated. Surface heights of 0.25, 0.5, 1, and 2 m are also assessed. For flow rates greater than 50 m/s, turbulent flow optimum nodule size is between 0.2 mm and 0.6 mm. Surfaces greater than 1 m in height at flow rates less than 50 m/s maximize mass with nodule sizes of 1.4 mm and 2 mm.","PeriodicalId":112698,"journal":{"name":"Volume 10: Fluids Engineering","volume":"517 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patterned surfaces of hydrophobic and hydrophilic materials are considered to sustain dropwise condensation, providing the benefits of both materials and creating a surface with a low energy barrier for nucleation and capable of sustaining dropwise condensation. Surface heights, nodule sizes, and flow rates are evaluated on square-patterned surfaces to maximize mass collection. A thermal model is used to assess surface performance and includes an equivalent thermal resistance for diffusion. Flow rates of 15, 25, 50, and 100 m/s with nodule sizes between 0.1 mm to 3.6 mm are evaluated. Surface heights of 0.25, 0.5, 1, and 2 m are also assessed. For flow rates greater than 50 m/s, turbulent flow optimum nodule size is between 0.2 mm and 0.6 mm. Surfaces greater than 1 m in height at flow rates less than 50 m/s maximize mass with nodule sizes of 1.4 mm and 2 mm.
亲疏水混合表面结核和高度尺寸的优化
疏水和亲水材料的图案表面被认为可以维持滴状凝结,提供了这两种材料的优点,并创造了一个具有低能量势垒的成核表面,能够维持滴状凝结。在方形表面上评估表面高度、结节大小和流速,以最大限度地收集质量。热模型用于评估表面性能,并包括扩散的等效热阻。流速为15、25、50和100米/秒,结节大小在0.1毫米至3.6毫米之间。还评估了0.25、0.5、1和2米的表面高度。当流速大于50 m/s时,湍流的最佳结核尺寸在0.2 mm ~ 0.6 mm之间。当流速小于50m /s时,高度大于1m的表面质量最大,结核尺寸分别为1.4 mm和2mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信